The Effect of Oleanolic and Ursolic Acids on the Hemolytic Properties and Biofilm Formation of Listeria monocytogenes

ANNA KUREK, KATARZYNA MARKOWSKA, ANNA M. GRUDNIAK, WIRGINIA JANISZOWSKA, and KRYSTYNA I. WOLSKA

1 Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
2 Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland

Submitted 5 September 2013, revised 5 November 2013, accepted 16 November 2013

Abstract

Oleanolic acid and ursolic acid are pentacyclic triterpenoids isolated from a variety of medicinal plants, which have antibacterial activity. Listeria monocytogenes is a Gram-positive facultative pathogen, being the causative agent of listeriosis. The present study was carried out to evaluate the in vitro effect of sub-inhibitory concentrations of both triterpene acids on the pathogenicity determinants of L. monocytogenes: their hemolytic activity and biofilm forming ability. Oleanolic and ursolic acids inhibited listeriolysin O activity without influencing toxin secretion. Biofilm formation, and the viability of L. monocytogenes cells in biofilms was diminished by both compounds. Thus, both acids affected L. monocytogenes virulence. It was also demonstrated that oleanolic acid bound to the peptidoglycan of L. monocytogenes and this interaction was influenced by teichoic acids.

Keywords: Listeria monocytogenes, biofilm, listeriolysin O, oleanolic acid, ursolic acid

Introduction

Compounds of therapeutic value extracted from medicinal plants are mostly secondary metabolites (Cowan, 1999). Oleanolic acid (OA) and ursolic acid (UA) are representatives of the pentacyclic triterpenoids whose structures are based on the isoprene moiety. Both compounds exhibit several pharmacological activities. The hepatoprotective, anti-inflammatory, antioxidant and anticancer activities of OA and UA are well documented (Ikeda et al., 2008; Pollier and Goossens, 2012). OA, UA and their derivatives also possess antibacterial activity, primarily against Gram-positive bacteria, including multidrug-resistant strains (Fontanay et al., 2008; Wolska et al., 2010). However, the broad application of OA/UA is currently restricted because their mechanism of action is still poorly understood and the side-effects on eukaryotic cells have not been fully characterized.

A relatively small number of studies have investigated the cellular targets and functions affected by OA/UA. Ren and coworkers (2005) showed that UA caused differential gene expression in Escherichia coli and substantially inhibited biofilm formation by E. coli, Pseudomonas aeruginosa and Vibrio harveyi. Subsequently, Chen and coworkers (2009) demonstrated the ability of the oleane-type triterpenoid, glycyrrhizin, to inhibit the diarrhea-inducing activity of the heat-labile enterotoxin produced by ETEC (enterotoxicogenic E. coli). The interaction between OA/UA and several other antibacterial agents – mainly conventional antibiotics – has been also reported (Ge et al., 2010). Of particular interest is their synergistic action with β-lactam antibiotics against Staphylococcus aureus and Staphylococcus epidermidis (Kurek et al., 2012) and the ability to induce stress response (Grudniak et al., 2011).

The Gram-positive pathogen Listeria monocytogenes is the causative agent of listeriosis, a disease that has increased markedly in Europe in recent years (Allberger and Wagner, 2010). Listeriolysin O (LLO) is considered as a major virulence determinant of Listeria (Kayal and Charbit, 2006; Schnupf and Portnoy, 2007). Recent studies showed new roles for intracellular LLO, such as control of autophagy upon vacuolar escape, and revealed the extracellular activities of LLO, for example induction of bacterial entry into the cells and modulation of immune activity (Hamon et al., 2012). L. monocytogenes forms biofilms with a structure that varies greatly from one strain to another. Bacteria living in biofilms are less susceptible than planktonic cells to antimicrobial
agents, especially antibiotics (Renier et al., 2011). The factors responsible for this enhanced resistance include restricted penetration of antimicrobials into the biofilm structure, decreased growth rate and the expression of possible resistance genes (Lewis, 2001). For this reason, the ability to grow in a biofilm is known to enhance the pathogenicity of certain bacterial species.

It was previously proved that the cell wall constitutes a cellular target of OA/UA activity against the facultative pathogen Listeria monocytogenes. Both these pentacyclic triterpenoids affected morphology and enhanced autolysis of bacterial cells, influenced autolysis of the isolated cell wall, inhibited peptidoglycan turnover and quantitatively changed the profile of muropeptides obtained after the digestion of peptidoglycan with mutanolysin (Kurek et al., 2010). So far there is no available information on the ability of peptidoglycan to bind either OA or UA.

The aim of the present study was to gain some insight into the effect of OA/UA on L. monocytogenes virulence factors. The influence of these compounds on the secretion and activity of listeriolysin O, biofilm formation and L. monocytogenes viability in biofilms was examined. As peptidoglycan is involved in L. monocytogenes biofilm formation, the ability of UA/OA to bind this compound was also studied.

Experimental

Materials and Methods

Bacterial strain, medium and reagents. Listeria monocytogenes (PCM 1291) was obtained from the Polish Culture Collection, Wrocław, Poland. The bacteria were grown in tryptic soy broth with yeast extract – TSYEB at 37°C. OA, UA and all other reagents were purchased from Sigma. OA containing a tritium-labeled hydroxyl group (3H-OA, 1 mg mL⁻¹, activity 5.1 GBq mmol⁻¹) was provided by the Department of Plant Biochemistry, Faculty of Biology, University of Warsaw.

Measurement of the hemolytic activity of L. monocytogenes. An overnight culture of L. monocytogenes was grown in TSYEB medium with constant shaking. After dilution to attain an A₆₀₀ of 0.1, the cultures were incubated further to an A₆₀₀ of 0.5 in medium supplemented with sub-inhibitory concentrations of OA or UA as required. Samples of 1 mL were centrifuged and 20 µL aliquots of the supernatants were incubated with a 1% suspension of sheep red blood cells in phosphate-buffered saline (PBS), pH 6.5, in a total volume of 1 mL at 37°C for 30 min. In the control set of experiments sheep red blood cells were incubated only with OA/UA in the conditions described above. After centrifugation, the supernatants were collected and their absorbance at 410 nm was measured. The extent of hemolysis was calculated as the percentage of the complete hemolysis achieved by lysing erythrocytes with 1% SDS.

Determination of the LLO concentration in culture supernatants. An overnight L. monocytogenes culture was diluted to an A₆₀₀ of 0.1 and then divided into separate samples. One sample served as a control, while sub-inhibitory concentrations of OA or UA were added to others and incubation was continued to an A₆₀₀ of 0.5. Cells were harvested by centrifugation, and proteins from the supernatants were precipitated and concentrated using 10% trichloroacetic acid (TCA). The protein concentration in each sample was estimated using the bicinchoninic acid assay (Brown et al., 1989). Samples containing 5 µg of precipitated protein were subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli, 1970) and the resolved protein bands were transferred to polyvinylidene difluoride (PVDF) membranes. The membranes were incubated with rabbit anti-LLO polyclonal antibody (Abcam, UK, 1:1500 dilution) for 1 h, washed, then incubated with goat anti-rabbit IgG – alkaline phosphatase conjugate, washed again and finally developed using 5-bromo-4-chloro-3-indolyl phosphate and nitro-blue tetrazolium (BCIP/NBT) in carbonate buffer as the chromogenic substrate. Images of the membranes were captured and analyzed using Image Master VDS (Fujifilm) and Image Master 1D Elite version 301 programs (NonLinear Dynamics, UK).

Quantitative determination of biofilm formation and measurement of cell viability in biofilms. Bacterial biofilms were developed in wells of polystyrene microtiter plates containing 200 µL samples of culture diluted in TSYEB medium supplemented with 0.45% glucose and various amounts of the tested compounds. The lowest concentration of a compound that inhibited biofilm growth, as determined by crystal violet staining, was taken as the minimal biofilm inhibitory concentration (MBIC) (Smith et al., 2008). To determine the amount of biofilm in the wells of polystyrene microtiter plates, those formed after 24 h in the presence of OA, UA or with control samples were stained with crystal violet and, after brief washing with 0.85% NaCl, ethanol was added to each well to solubilize the crystal violet and the dye concentration in this wash was estimated by measuring the A₅70 with a microtiter plate reader (Sunrise, Tecan, Switzerland). To measure cell viability in biofilms, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining method was employed (Kairo et al., 1999) with minor modifications (Walencka et al., 2005). The intensity of the violet color of the resulting formazan was determined by measuring the A₅₇₀ with a microtiter plate reader.

Measurement of the ability of OA to bind peptidoglycan. Peptidoglycan was isolated from L. monocytogenes.
genes cells following the procedure described by Korsak and coworkers (2005). The final peptidoglycan preparations were divided into two parts: one part was lyophilized and the second was treated with 5% TCA in order to remove teichoic acids. The prepared peptidoglycan samples were suspended in distilled water (1 mg mL\(^{-1}\)) and amounts of 100 µg were incubated with \(^{3}\)H-OA (0.05, 0.25, 0.5 or 1 µg) for 30 min at room temperature. The binding reactions were terminated by adding a 10-fold excess of unlabeled OA followed by 5 min incubation. The samples were centrifuged (16,000 g, 10 min), then the resulting pellets were washed with distilled water and analyzed using a scintillation counter. In the negative controls, the cell wall fragments in the binding reaction were replaced by water.

Statistical analysis. Data are shown as means of at least three experiments ± SD. Statistical significance of the differences between experimental groups was calculated using two-tailed unpaired Student’s test. \(p\) value < 0.05 was considered statistically significant.

Results and Discussion

The hemolytic activity of the supernatants of *L. monocytogenes* cultures treated with 0.5× or 0.75× minimal inhibitory concentration (MIC) of OA/UA and an untreated control culture was determined. MIC values of both compounds were 8 g mL\(^{-1}\) as determined previously (Kurek *et al*., 2012). Both triterpene acids inhibited LLO hemolytic activity. Compared with the control, the inhibition observed in cultures treated with 0.75 × MIC of OA or UA amounted to 2.5-fold and 2.8-fold, respectively (Fig. 1). As it was demonstrated that triterpenoids are able to form complexes with sterols (Osbourn, 1996) and cholesterol are present in erythrocyte membrane, the influence of OA/UA on erythrocytes in the absence of LLO was determined in the control experiments. It was shown that OA and UA in concentration 0.015 × MIC, i.e. equivalent to 0.75 × MIC present in LLO-containing supernatants (supernatants were diluted 50 × in hemolytic activity assay, see Material and Methods) did not cause the lysis of erythrocytes. Analysis of SDS-PAGE followed by Western blotting demonstrated that the level of LLO in the culture supernatants was not diminished by treatment with either OA or UA (Fig. 2). The differences between densitometric measurement of peak areas did not exceed 10%. The synthesis of LLO was also not influenced by either of these compounds, since the amount of this cytolysin in whole cell lysates was unchanged by OA/UA treatment (data not shown). LLO is translated as a precursor polypeptide of 529 residues and its N-terminal signal sequence is cleaved after protein secretion (Mengaud *et al*., 1988). The results of the present study indicate that OA and UA do not interfere with the functioning of the LLO secretion apparatus. Elucidation of the reason of the reduction of LLO hemolytic activity, for example by inhibiting initial binding to the erythrocyte membrane or subsequent step of pore formation, demands further experiments.

![Fig. 1. Effect of OA and UA on LLO activity in *L. monocytogenes* culture supernatants. The results are the means of three independent experiments and the error bars indicate standard deviations (*\(p<0.05\) vs control).](image)

![Fig. 2. Influence of OA and UA on LLO concentration in *L. monocytogenes* culture supernatants.](image)
respectively (Table I). The cell viability was reduced by 14% and 22% in the presence of 0.125× MBIC of OA or UA and by 42% and 56% in the presence of 0.5× MBIC of OA or UA, respectively (Fig. 3). Bacterial biofilms development is a multi-step process and their formation is influenced by a number of environmental factors including temperature, growth medium, pH and the nature of the surface (Moltz, 2005). Moreover, numerous molecular determinants are involved in the early stages of biofilm formation and the late stage of biofilm development among them is flagellum-mediated motility (O’Neil and Marquis, 2006). We previously observed that swarming-type, but not swimming-type, motility of Pseudomonas aeruginosa was severely inhibited by OA and UA (data not shown), therefore it may be speculated that OA/UA can diminish L. monocytogenes biofilm formation by negatively influencing its swimming movement ability.

It has also been established that peptidoglycan plays an important role in L. monocytogenes biofilm formation. Previous results from our laboratory showed that peptidoglycan metabolism was affected by OA/UA (Kurek et al., 2010). In the present study we found that tritium-labeled OA bound to isolated peptidoglycan and that the teichoic acids, long anionic polymers threading through peptidoglycan layers that are crucial in protecting bacteria against harmful molecules and environmental stresses (Xia et al., 2010) only partially inhibited this binding (Table II). Taken together these results suggest that changes induced by OA and UA in the peptidoglycan structure of L. monocytogenes influence biofilm formation.

In conclusion, we have demonstrated that oleanolic and ursolic acids affect the virulence factors of L. monocytogenes. Both triterpene acids inhibit listeriolysin O activity without influencing its secretion and they also diminish the ability of this species to grow in biofilms.

Acknowledgements
This work was financially supported by Polish Ministry of Science and Higher Education grants no. N 304 11732/4332 and NN 302 027937.

Table I
Influence of OA/UA on L. monocytogenes biofilm formation

<table>
<thead>
<tr>
<th>OA/UA concentration [MBIC]</th>
<th>A₅₇₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.493 ± 0.049</td>
</tr>
</tbody>
</table>
| 0.125× MBIC | 2.179 ± 0.038* | 2.293 ± 0.015 *
| 0.25× MBIC | 2.097 ± 0.042* | 2.175 ± 0.021* |
| 0.5× MBIC | 0.984 ± 0.037*| 0.861 ± 0.032* |

The results are the means of three independent experiments ± standard deviation. MBICs of both OA and UA were 24 µg mL⁻¹.

* Difference statistically significant (*p < 0.05 vs control).

Table II
Binding of radioactive OA to L. monocytogenes peptidoglycan

<table>
<thead>
<tr>
<th>³H-OA concentration [µg mL⁻¹]</th>
<th>Radioactivity of peptidoglycan (dpm per sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5*</td>
<td>322.52 ± 55.32</td>
</tr>
<tr>
<td>2.5*</td>
<td>469.33 ± 57.20</td>
</tr>
<tr>
<td>5*</td>
<td>573.99 ± 35.19</td>
</tr>
<tr>
<td>10</td>
<td>875.92 ± 31.12</td>
</tr>
</tbody>
</table>

The presented values are the means of three independent experiments after subtraction of the background value ± standard deviation.

* Difference statistically significant (*p < 0.05).

Literature

Grudniak A.M., A. Kurek, J. Szarlak and K.I. Wolska. 2011 Oleanolic and ursolic acids affect the expression of the cysteine...

