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Enterococci are a part of natural intestinal �ora of 
both human and animals. �ese Gram-positive bacteria 
are typically harmless commensals, but in particular 
conditions they can also cause serious infections. So 
far, several Enterococcus species have been identified 
(Hardie and Whiley, 1997), of which two, Enterococcus 
faecalis and Enterococcus faecium have gained clinical 
importance. Enterococci have emerged as a serious 
nosocomial pathogens in the 1990s (Edwards, 2000), 
and their impact is increasing due to growing numbers 
of patients at-risk (Sydnor and Perl, 2011). Enterococci 
were reported as the third most common cause of hos-
pital-associated infections in the United States (Hidron 
et al., 2008). While the majority (around 80%) of ente-
rococcal infections in humans is caused by E. faecalis 
(Jett et al., 1994; European Centre for Disease Preven-
tion and Control, 2010), the prevalence of E. faecium is 
currently on the rise (Top et al., 2007; Lester et al., 2008; 
Hidron et al., 2008). �e most serious forms of infec-
tion caused by E. faecalis are endocarditis and blood-
stream infections; other diseases include urinary tract 
infections (UTIs) and post-surgery wound infections 
(Jett et al., 1994); central nervous system and neonatal 
infections occur with low frequency (Murray, 1998).

Enterococci possess several traits that facilitate dis-
semination and survival in the hospital settings, and 
make theirs infections difficult to treat; they are able to 
grow in the range of 10–45°C, at pH 9.5, in presence of 
6.5% NaCl and to survive at 60° for 30 min (Sherman, 

1937). Enterococci show an intrinsic lack of suscepti-
bility to various antibiotics, including cephalosporins, 
monobactams, sulphonamides, low concentrations of 
aminoglycosides, as well as, in the case of E. faecalis, 
streptogramins and lincosamides. Increasing anti biotic 
resistance is associated with the capability of these bac-
teria to acquire and to transfer mobile genetic elements 
encoding resistance genes (Marothi et al., 2005; Palmer 
et al., 2010). �e resistance to antibiotics can be also 
developed due to spontaneous mutations. Hospital-
associated strains of E. faecalis o"en present acquired 
resistance to antibiotics of several classes such as tetra-
cyclines, quinolones and high-level aminoglycoside 
resistance (HLAR), while vancomycin-resistant ente-
rococci (VRE) of this species remain rare (Marothi 
et al., 2005; Hidron et al., 2008). �e HLAR phenotype 
in E. faecalis is of particular concern as the combination 
of aminoglycoside with penicillin (ampicillin or peni-
cillin G) represents a therapy of choice for enterococcal 
invasive infections (Arias and Murray, 2008). Combi-
nation of these two drugs has a synergistic bactericidal 
e#ect on enterococci (Moellering and Weinberg, 1971). 
Normally, the enterococcal cell-wall is poorly perme-
able for aminoglycosides but these drugs can penetrate  
to the intracellular target (ribosome) in the presence 
of the cell-wall synthesis inhibitors as like β-lactams. In 
Europe, percentage of HLAR among E. faecalis reach 
relatively high values – from 30% to 50% (European 
Centre for Disease Prevention and Control, 2010). 
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In recent years, we witness an emergence of penicil-
lin-resistant E. faecalis isolates in hospital environment. 
�ree mechanisms for penicillin resistance in E. faeca-
lis have been reported, and include (i) production of 
β-lactamase which inactivates the drug, (ii) overpro-
duction of the drug target, penicillin-binding proteins 
(PBPs) and (iii) their decreased affinity for β-lactams. 

Determination and interpretation criteria
of penicillin susceptibility in E. faecalis

According to the guidelines of Clinical and Labo-
ratory Standard Institute (CLSI) determination of 
E. faecalis susceptibility to penicillin and ampicillin 
can be carried out with the use of either disc di#u-
sion method or by establishing the minimal inhibitory 
concentration (MIC) values by an agar or broth dilu-
tion methods (Clinical and Laboratory Standard Insti-
tute, 2011). Following the CLSI interpretation criteria, 
strains of E. faecalis can be defined as a susceptible (S), 
or resistant (R) to penicillin, without an intermediate 
(I) category (Table I). For the detection of β-lactamase-
producing strains, the nitrocefin test is recommended 
(Clinical and Laboratory Standard Institute, 2011). �e 
European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) provides interpretations of MICs 
and zone diameters only for ampicillin (Table I) (Euro-
pean Committee on Antimicrobial EUCAST Testing, 
2011). Criteria used by CLSI and EUCAST are di#er-
ent, MIC values equal to 8 µg/ml for ampicillin denote 
susceptible strain according to CLSI but intermediate 
following the EUCAST criteria. 

In addition, the EUCAST provides so-called epi-
demiological cut-o# values (ECOFFs), which sepa-
rate the wild-type (WT) strains from the strains that 
exhibit acquired and mutational resistance mechanisms 
to the drug in question. In the case of E. faecalis, the 
ECOFF value for penicillin is 16 µg/ml, and for ampi-
cillin is 4 µg/ml, i.e. the WT strains show MICs lower 

than or equal to this values. According to MIC distri-
butions determined by the EUCAST, for most of the 
E. faecalis strains MIC of penicillin ranges between 
2 and 4 µg/ml and MIC of ampicillin ranges between 
1  and 2 µg/ml (www.eucast.org/mic_distributions/; 
16th November 2011, date last accessed).

Resistance due to the target modification

Penicillin-binding proteins (PBPs) are produced 
by almost all bacteria. �ese membrane proteins are 
involved in the final stages of peptidoglycan synthesis. 
Binding β-lactam antibiotic to PBPs inhibits enzymatic 
activity of protein and leads to cell growth inhibition 
or cell death (Lleó et al., 1987). However, certain PBPs 
show lower affinity to penicillin and because of that, 
they are responsible for reduced susceptibility to peni-
cillin in a number of Gram-negative and Gram-positive 
bacteria, including enterococci (Fontana et al., 1983; 
Canepari et al., 1986; 1987). Low-affinity PBPs replace 
other PBPs, inhibited by drugs and take over their 
transpeptidase function (Fontana et al., 1983; 1985). 

E. faecalis produces five PBPs, including four high-
molecular weight PBPs and one low-molecular weight 
PBP (Williamson et al., 1983, Duez et al., 2001; Ono 
et al., 2005). One of these PBPs, designed PBP5, and 
sometimes named PBP4, is a low-affinity PBP, and 
its changes and/or overproduction can be related to 
penicillin resistance. �e E. faecalis PBP5 encoded 
by the genome of V583 strain (Paulsen et al., 2003) 
is a  high-molecular weight protein of about 75 kDa 
(680aa) and is organized in three distinct domains. �e 
N-terminal hydrophobic domain, about 30aa long, is 
responsible for PBP5 anchoring to the cell membrane 
(Ghuysen et al., 1996; Signoretto and Canepari, 2000). 
�e penicillin-binding domain, with typical penicillin-
binding motifs, 

424
SXXK

427
, 

482
SDN

484
 and 

619
KTG

621
, 

is localized at the C-terminus of the protein (Zapun 
et al., 2008). �ese two parts are connected by a cen-
tral non-penicillin-binding domain of presumable 
transglycosylase activity proposed by analogy with 
high-molecular-weight Escherichia coli PBPs (Ghuysen 
et al., 1996; Signoretto and Canepari, 2000). Non-pen-
icillin-binding domain seems to be essential for the 
proper folding, stability and the biochemical activ-
ity of the penicillin-binding domain, like in E. hirae 
(Mollerach et al., 1996). �is specific structure classifies 
enterococcal PBP5 in the class B multimodular PBPs 
(Ghuysen et al., 1996).

PBP5 of E. faecalis is closely related to the other 
enterococcal low-affinity PBPs described previously 
(Zorzi et al., 1996). Importance of alterations in PBP5 
caused by point mutations for β-lactam resistance is 
well-described in E. faecium (Ligozzi et al., 1996; Zorzi 

Penicillin 8 16 15 14

Ampicillin 8 16 17 16

Table I

CLSI and EUCAST clinical breakpoints for penicillin

and ampicillin for E. faecalis

CLSI

MIC breakpoint

(µg/ml)

Zone diameter breakpoint

(mm) – disc content 10 μg

S≤ R≥ S≥ R≤

Penicillin – – – –

Ampicillin 4 8 10 88

EUCAST

MIC breakpoint

(µg/ml)

Zone diameter breakpoint

(mm) – disc content 2 μg

S≤ R> S≥ R<
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et al., 1996; Rybkine et al., 1998). Amino acid substitu-
tions in the region between motifs SDN and KTG of the 
penicillin-binding domain are involved in the resist-
ance to penicillin and ampicillin by decreasing affin-
ity to these drugs (Ligozzi et al., 1993; Fontana et al., 
1996; Ligozzi et al., 1996). Similarly, mutations within 
the PBP5 penicillin-binding domain in E. faecalis result 
in the decrease of affinity and susceptibility to β-lactam 
antibiotics. Such isolates were first detected in Japan 
in 1998–2002 (Ono et al. 2005). Four clinical isolates 
with ampicillin MIC values 8–16 µg/ml harbored amino 
acid alterations of PBP5 at the amino acid positions 520 
and 605 (P520S and Y605H), i.e. located in the region 
between the SDN and KTG motifs of the penicillin-
binding domain (Ono et al., 2005). �ese isolates also 
showed elevated MICs for imipenem; susceptibility to 
penicillin was not reported in this study. Mutations in 
the same amino acid positions were detected in UTI 
clinical isolates with reduced faropenem susceptibil-
ity, also found in Japan (Hiraga et al., 2008). Di#erent 
kind of modifications was observed in the laboratory 
mutant strain 56R with high penicillin and ampicillin 
MIC values equal 128 µg/ml and 64 µg/ml, respectively 
(Signoretto et al., 1994; Signoretto and Canepari, 2000). 
Comparison of the deduced amino acid sequence of 
PBP5 from 56R with its counterpart in the JH2-2 sus-
ceptible strain revealed that the resistant strain harbors 
a  small frameshi" mutation in the non-penicillin-
binding domain (the peptide 

272
AAAQLIGYTG

281
 is 

replaced by 
272

ACAINRVYG
280

, resulting in a protein 
shorter by a single amino acid residue), as well as the 
T/I mutation, immediately adjacent to the K residue 
in the SXXK motif (Duez et al., 2001). As the corre-
sponding sequence of the parental susceptible strain 56 
was not available, it was not possible to draw reliable 
conclusion about these changes (Duez et al., 2001). �e 
role of PBP5 for decreased susceptibility to β-lactams 
in E. faecalis is further supported by the fact that inac-
tivation of the pbp5 gene in the 56 strain by Tn916 
mutagenesis resulted in 8-fold decrease in the penicil-
lin MIC value of the PBP5-defficient strain (Signoretto 
and Canepari, 2000). 

Resistance mediated
by the PBP overproduction

�e overproduction of the drug target appears to be 
another important mechanism of penicillin resistance 
in clinical isolates and laboratory mutants of E. faecalis, 
and was also observed in other enterococcal species 
such as E. faecium, Enterococcus avium and Enterococ-
cus durans (Fontana et al., 1994; al-Obeid et al., 1990). 
�e exposure of susceptible E. faecalis strains to peni-
cillin led to selection of penicillin-resistant mutants 

with hyperproduction of PBP5 and this type of resist-
ance was developing both through serial passages on 
plates containing increasing concentrations of peni-
cillin (al-Obeid et al., 1990; Hodges et al., 1992; Duez 
et al., 2001) and under continuous penicillin exposure 
(Hodges et al., 1992). A detailed analysis of the JH2-2r 
strain with penicillin MIC value of 75 µg/ml, overpro-
ducing PBP5, and its parental susceptible strain JH2-2 
confirmed that both strains harbor identical pbp5 gene 
(Duez et al., 2001). Apparently increased amount of 
PBP5 were also observed in E. faecalis from hospital 
settings in Spain (Cercenado et al., 1996). �ese two 
clinical isolates showed MIC values of 64 µg/ml and 
32–64 µg/ml for penicillin and ampicillin, respectively, 
and were isolated independently from two patients with 
UTI, treated with ampicillin (Cercenado et al., 1996). 

�e molecular basis of PBP5 overproduction in 
E. faecalis has not yet been clarified. In E. hirae, synthe-
sis of PBP5 is under the control of the psr gene (PBP5 
synthesis repressor), located upstream pbp5, and altera-
tion of psr by a point mutation or deletion results in 
the elevated expression of PBP5 (Ligozzi et al., 1993). 
In E. faecalis, however, no such gene is present in the 
proximity of to pbp5, and psr-like gene located else-
where in the genome showed exactly the same sequence 
in the penicillin-resistant mutant JH2-2r, described 
above, in comparison to the JH2-2 parental strain. 
Moreover, the pbp5 promoter region in both strains 
was identical (Duez et al., 2001). �erefore, the pathway 
leading to PBP5 overexpression in E. faecalis remains 
to be elucidated.

Resistance due to β-lactamase acquisition

β-Lactamase production is another mechanism of 
resistance penicillin, so far restricted almost exclu- 
sively to E. faecalis. �e first β-lactamase produc-
ing (Bla+) enterococcal isolate, HH22, was detected 
in Houston, Texas, in 1981 (Murray and Mederski-
Samaraj, 1983). MIC values for penicillin and ampi-
cillin of HH22 were above 1000 µg/ml, when the high 
inoculum of 107 CFU/ml was used (Murray et al., 
1986a). Since then, Bla+ enterococci became more 
prevalent and were isolated from severe infections 
and nosocomial outbreaks (Murray et al., 1991; 1992; 
Patterson et al., 1988a; Rhinehart et al., 1990; Wells 
et al., 1992; Mazzulli et al., 1992). β-Lactamase from 
E. faecalis is a typical penicillinase, able to hydrolyze 
penicillin, ampicillin and ureidopenicillins (e.g. pipera-
cillin), and sensitive to inhibitors such as clavulanic acid 
(Murray et al., 1986b). 

Most likely, enterococci acquired the β-Lactamase 
gene from staphylococci (Murray et al., 1986b). �e 
E. faecalis HH22 carries the blaZ gene, whose sequence 
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is identical to the staphylococcal blaZ genes from the 
pC1 and pS1 plasmids (Zscheck and Murray, 1991), 
and from staphylococcal Tn552 transposon (Tomayko 
et al., 1996). In contrast to the inducible production of 
large amounts of β-Lactamase by Staphylococcus aureus, 
E. faecalis produces the enzyme constitutively on rela-
tively low level (Murray et al., 1986a; Okamoto et al., 
1996). Particular enterococcal clones may di#er by 
the presence of the regulatory genes blaR1 (encoding 
antirepresor) and blaI (encoding repressor) from the 
bla gene cluster of S. aureus. For example, the HH22 
strain possesses only a part of blaR1 and lacks blaI 
(Zscheck and Murray, 1993). Even if these genes are 
present, the β-lactamase is still produced constitu-
tively. It is possible that blaR1 and blaI contain muta-
tions which make them non-functional or that these 
regulatory proteins are not active in the enterococcal 
cell (Zscheck and Murray, 1991; Okamoto et al., 1996; 
Tomayko et al., 1996).

In E. faecalis, blaZ genes reside either on conjuga-
tive plasmids (Murray et al., 1986a, b, Patterson et al., 
1988b; 1990; Markowitz et al., 1991), or on bacterial 
chromosome (Rice et al., 1991; Chow et al., 1993). �e 
blaZ gene in the first described Bla+ isolate HH22 was 
shown to be present on the ~70 kb pheromone-respon-
sive conjugative plasmid pBEM10 that was transferred 
with a high frequency of 10–2 (Murray et al., 1988). 
Efficient conjugative transfer of pheromone-responsive 
plasmids, specific for enterococci, is due to the unique 
mechanism of response to so-called sex pheromones, 
secreted by recipient cells lacking a particular type of 
plasmid. Stimulated donor cells respond by production 
of proteins necessary for cell-to-cell contact and sub-
sequent plasmid transmission (Dunny, 1990; Palmer 
et al., 2010). �e pBEM10 plasmid responds to the 
cAD1 pheromone and uses the same pheromone sys-
tem as pAD1 (Murray et al., 1988) with which it shares 
extensive homology (Galli and Wirth, 1991).

�e chromosome-located blaZ gene, detected in iso-
lates from Boston, was transferable at low frequency 
(below 10–8), together with determinants of resistance to 
a number of other antimicrobials such as erythromycin, 
gentamicin, mercuric chloride, streptomycin, and tetra-
cycline (Rice et al., 1991). Later on it was shown that 
blaZ is associated with a composite ~60 kb transposon 
Tn5385 which structure was a subject of several studies. 
Tn5385 comprises sequences of transposons, such as 
(1) Tn5381 that carries the tetM gene (Rice et al., 1992), 
(2) Tn5384, that itself contains Tn4001 with the aacA-
aphD gene (responsible for gentamicin resistance) and 
a derivative of Tn917 with the ermB gene (erythromy-
cin resistance determinant) (Rice et al., 1995; Bonafede 
et al., 1997) and (3) Tn552-like staphylococcal trans-
poson with the blaZ gene and a part of blaR1 (Rice 
et al., 1996; Bonafede et al., 1997). Additionally, Tn5385 

possesses two replication genes of pAMβ1, a  broad-
host range plasmid originally described in E. faecalis, 
a gene homologous to the putative relaxase gene from 
small, mobilizable staphylococcal plasmid pS194 and 
three types if insertions sequences (IS256, IS257, and 
IS1216), indicating a complex series of co-integration 
events (Rice and Carias, 1998; Bonafede et al., 1997). 

Almost all Bla+ E. faecalis isolates identified so far 
belong to two clonal complexes, BVE (Bla+ Vanr endo-
carditis) and ACB (Argentina-Connecticut-Bla+), sug-
gesting a limited number of transfer events of staphy-
lococcal blaZ gene to E. faecalis (Nallapareddy et al., 
2005). �e BVE clonal complex includes the first Bla+ 
isolate HH22 (Nallapareddy et al., 2005) and the mem-
bers of BVE were found spreading in five states (Dela-
ware, Texas, Pennsylvania, Florida, and Virginia) of 
North America (Murray et al., 1991), including a seven-
year outbreak in a Virginia hospital where they were 
named the mid-Atlantic clone (Seetulsingh et al., 1996). 
BVE was also responsible for bloodstream infections in 
a North Carolina hospital (Murdoch et al., 2002). Rep-
resentatives of this clone are also o"en associated with 
glycopeptide resistance and possess a pathogenicity 
island (Nallapareddy et al., 2005), thus demonstrating 
a high pathogenic potential and adaptation to the hos-
pital environment. �e ACB clonal complex occurred 
in hospital outbreaks in Connecticut (Patterson et al., 
1991) and Argentina (Murray et al., 1992). Application 
of multilocus sequence analysis (MLST) to BVE and 
ACB isolates clustered them into hospital-associated 
clonal complexes, CC2 and CC9, respectively (Ruiz-
Garbajosa et al., 2006). �e described above isolates 
from Boston carrying the Tn5385 transposon also 
belonged to CC9 (McBride et al. 2007). Both CC2 and 
CC9 are considered high-risk enterococcal clonal com-
plexes, or HiRECCs (Leavis et al., 2006). Only a single 
isolate Bla+ from Beirut, Lebanon, did not belong to 
any of these two HiRECCs (Nallapareddy et al., 2005; 
Ruiz-Garbajosa et al., 2006). Diversity of blaZ sequence 
and variable presence of regulatory genes blaR1 and 
blaI within the mid-Atlantic/BVE clone suggests that 
the bla gene cluster has originated from more than one 
source or the gene cluster has diverged significantly 
a"er acquisition (Tomayko et al., 1996).

Current epidemiology of penicillin resistance
in E. faecalis

�e resistance to penicillin in clinical isolates of 
E. faecalis remains a relatively rare phenomenon. A large 
TEST study collecting isolates in 266 centers in North 
and Latin America, Asia and Europe in 2004–2006 
reported 100% susceptibility to penicillin and ampi-
cillin among 2701 isolates of E. faecalis (Reinert et al., 



Penicillin resistance in E. faecalis3 157

2007). Analysis of the Surveillance Network data-
bases, collecting susceptibility data of predominant 
ICU pathogens during 2000–2002 from 650 hospitals 
in Europe (France, Germany and Italy), Canada, and 
the US revealed ampicillin resistance ranging from 
0.2% (France) to 4.7% (Italy) among 7865 isolates of 
E. faecalis (Jones et al., 2004). Some of national studies 
recently report much higher ratios of penicillin resist-
ance (Table II). In general, little is known about clonal 
relationships of current penicillin-resistant E. faecalis. 
Recently, twenty E. faecalis isolates from bloodstream 
infections from seven hospitals in Denmark collected 
in 2007 displaying reduced susceptibility to penicillin 
(MIC > 16 µg/ml by the Etest method and 4–8 µg/ml by 
the broth microdillution method) and full ampicillin 
susceptibility were reported. Most of these isolates (17) 
belonged to the same sequence type ST6 of CC2. �e 
mechanism underlying this phenotype was not stud-
ied (Guardabassi et al., 2010). Pulsed-field gel electro-
phoresis (PFGE) analysis of 90 penicillin-resistant but 
ampicillin-susceptible isolates from Greece revealed 
that the majority (52) of them belonged to a  single 
genotype while the remaining 38 isolates were grouped 
in five genotypes (Metzidie et al., 2006). None of these 
isolates produced β-lactamase (Table II).

Conclusions and perspectives

Penicillin and ampicillin play an important role in 
the treatment of serious infections caused by E. faeca-
lis and the development of resistance to these drugs 
implies serious clinical problems, especially as it 
excludes a synergistic bactericidal e#ect of β-lactams 
in combination with aminoglycosides. �e first cases 
of ampicillin-resistant E. faecium (AREfm) were identi-
fied in the early 1980s. AREfm isolates have emerged 
as a  causative agent of nosocomial infections and 
outbreaks (Coudron et al., 1984). Generally, ampicil-
lin resistance has become a typical trait for hospital-
associated strains of E. faecium, in particular of CC17, 
a HiRECC found in hospitals all over the world. One 
of the first steps of hospital-adaptation of CC17 was 
acquisition of ampicillin resistance (Leavis et al., 2006; 
Galloway-Peña et al., 2009). Although still rare, penicil-
lin resistance can be also acquired by E. faecalis via vari-
ous mechanisms and is o"en associated with HiRECCs 
circulating in hospitals. Moreover, the determinants 
of the resistance, such as β-lactamase genes, have 
a potential to be transferred to susceptible strains due 
to their localization on pheromone-responsive plasmids 
and within conjugative transposons. �ese elements 

60 8.3/3.3 endocarditis, bacteremia, intrabdominal Mexico City, January 1998 negative Calderón-Jaimes

  infections, surgical wound infections Mexico – December 1999  et al., 2003

75 28/12 rectal swabs (patients from ICUs) Brasília, Brazil January 2000 NT Titze-de-Almeida

    – December 2001  et al., 2004

71 27/23 bloodstream infections, UTI, surgical Istanbul, January 2000 negative Oncu et al., 2004

  wound infections  Turkey – December 2001

207 12/10 bloodstream infections, UTI, surgical Ankara,  October 2001  negative Kaçmaz and

  wound infection, catheters Turkey – October 2003  Aksoy, 2005

287 31.4/0 bloodstream infections, UTI, surgical �essaloniki, September 2003 negative Metzidie et al.,

  wound infection, catheters Greece – December 2004  2006

277 19/15 UTI Tehran, Iran March 2002 NT Jabalameli et al.,

    – April 2004  2009

970 NT/2.0 bloodstream infections, UTI, surgical  Cordoba,  January 2004  NT Causse et al.,

  wound infections Spain – August 2005  2006

625 NT/1.1 bloodstream infections, skin & so" Brasil 2005 – 2009 NT Gales et al., 2009

  tissue infections  (4 centers)

67 38.8/4.8 UTI Istanbul,  January  NT Butcu et al., 2011

   Turkey – July 2008

282 22.3/1.4 bloodstream infections, UTI, surgical Uberaba, 2006–2009 negative Conceição et al.,

  wound infection, catheters Brasil   2011

Table II

Susceptibility of E. faecalis to penicillin G and ampicillin in European, Asian, South- and North-American countries

NT, not tested

Number

of isolates

tested

Penicillin G/

ampicillin

resistance [%]

Clinical origin Location
Date

of collection

β-Lacta-

mase

activity

Reference
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contribute to the resistance spread among di#erent spe-
cies of bacteria, such as acquisition of β-lactamase gene 
from staphylococci by E. faecalis (Murray et al., 1986b) 
and subsequent transmission of the trait to E. faecium 
(Coudron et al., 1992). Also chromosomal determinant, 
pbp5, may disseminate in the population of E. faecalis 
due to frequent recombination in this species (Ruiz-
Garbajosa et al., 2006). It is necessary to observe phe-
nomenon of penicillin-resistance among E. faecalis.
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