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Introduction

Bacteria living in microbial communities use sev-
eral functions and strategies to survive or coexist with 
other microorganisms, competing to obtain nutrients 
and colonize space in their habitat (Hibbing et al. 2010). 
One of the strategies used by bacteria to guarantee their 
growth in communities is antagonism, which effectively 
limits the growth of other microorganisms (Russel et al. 
2017). To accomplish antagonism, bacteria must pro-
duce inhibitory substances such as antibiotics, organic 
acids, siderophores, volatile organic compounds, anti-
fungals, and bacteriocins (Riley 2009). In addition to 
inhibiting the growth of other microorganisms, bacte-
riocins have different traits that make them attractive 
for biotechnological applications. For example, while 
resistance against nisin exists, in general, the bacte rio-
cin mechanism of action less often induces resistance as 
it happens with conventional antibiotics (Behrens et al. 
2017). Furthermore, some bacteriocins are compounds 
produced by the natural host-associated microbiome; 

therefore, they are harmless to the host. Bacteriocins 
also show selective cytotoxicity toward cancer cells 
compared to normal cells (Kaur and Kaur 2015).

Classification, mechanism of action,
and structural characteristics

Bacteriocins are antimicrobial peptides synthesized 
by the ribosome representing the most abundant and 
diverse group of bacterial defense systems (Silva et al. 
2018). Bacteriocins were considered to have a narrow 
antimicrobial spectrum that could only inhibit bacterial 
strains closely related to produced bacteria; however, 
several studies have shown that there are bacteriocins 
able to kill different genera of bacteria and even certain 
yeasts, parasites, and cancer cells (Kaur and Kaur 2015; 
Baindara et al. 2018).

The success of bacteriocins in eliminating multi-
drug resistant pathogens (MDR) has led to medical 
applications to treat bacterial infections. In vivo tests 
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have demonstrated the effectiveness of bacteriocins 
to treat infections in animal models, too (McCaughey 
et al. 2016; Van Staden et al. 2016). Lactic acid bacteria 
(LAB) produce bacteriocins, being nisin from Lacto­
coccus lactis, the most well-known example (Silva et al. 
2018). Nisin was approved for use as a food preservative 
for preventing the growth of Listeria monocytogenes and 
other Gram-positive pathogens (Price et al. 2018). The 
Bacillus genus also produces bacteriocins with attractive 
characteristics (Salazar-Marroquín et al. 2016), includ-
ing subtilin (produced by Bacillus subtilis) and coagulin 
(produced by Bacillus coagulans). Bacillus thuringien­
sis produces bacteriocins with broad-spectrum activity, 
inhibiting various pathogens such as L. monocytogenes, 
Staphylococcus aureus, Klebsiella pneumoniae, Pseudo­
monas aeruginosa, and Vibrio cholerae, in addition to 
the Aspergillus fungus (Salazar-Marroquín et al. 2016).

Bacteriocins of Gram-positive bacteria are cationic 
and amphiphilic molecules whose mass varies from < 5 
to more than 30 kDa (Balciunas et al. 2013) (Fig. 1). 
Many classifications of bacteriocins are available, but 
their diverse chemical structures and inhibitory activi-
ties make their classification into a specific group quite 
difficult. Class I bacteriocins, also known as lanti - 
biotics, contain in their primary structure uncommon 
amino acids like lanthionine, β-methyl lanthionine, 
and dehydroalanine. These unique amino acids formed 
by post-translational modifications can provide anti-
microbial activity and peptide stability. For example, 
they can create covalent bridges that result in internal 
rings that give stability to the peptide structure. In 
addition, internal rings contribute to the formation of 
a secondary structure in water that favors antimicro-
bial activity (Almeida and Pokorni 2012). Around 30% 

of lantibiotics already identified have been purified 
from lactic acid bacteria, including the well-known 
nisin, mersacidin, and lacticin 3147 (Stoyanova et al. 
2012). The class II bacteriocins are membrane-active 
and heat-stable peptides known as non-lantibiotics 
or pediocin-like antibiotics (Balandin et al. 2019). 
They do not harbor modified amino acids, and their 
molecular weights are lower than 10 kDa. Prototype 
bacteriocins of this group are pediocin PA-1, pentocin 
31–1, enterocin P, sakacin G, enterocin A, two-peptide 
components (enterocin DD14, plantaracin E/F), sec-
dependent secreted (acidocin B), and other not yet 
subclassified (bactofencin A peptides) (Liu et al. 2008; 
Balandin et al. 2019; Ladjouzi et al. 2020). The class III 
bacteriocins are large (> 30 kDa) heat-labile peptides 
composed of an N-terminal endopeptidase domain 
and a C-terminal substrate recognition domain. Bac-
teriocins of this group can lyse the cell wall of sensi-
tive bacteria, although there are non-lytic bacteriocins 
in this group too, like helveticin J. Some examples of 
Class III bacteriocins are helveticin M, zoocin A and 
enterolysin A (bacteriolysins), and millericin B (murein 
hydrolase) (Alvarez-Sieiro et al. 2016; Sun et al. 2018). 
Class IV are complex peptide structures associated with 
lipid and carbohydrate moiety forming glycoproteins 
and lipoproteins. These structural characteristics make 
them sensitive to the action of glycolytic or lipolytic 
enzymes. Lactocin 27 and leuconocin S are prototype 
bacteriocins of this group and are recognized to disrupt 
bacterial cell membranes (Simons et al. 2020). Class V 
includes cyclic peptide structures like enterocin AS-48, 
pumilarin, lactocyclicin Q, and plantaricyclin A (Perez 
et al. 2018; Sánchez-Hidalgo et al. 2011). The circular 
nature of their structures provides Class V with supe-
rior stability against several stresses compared to most 
linear bacteriocins. Biosynthesis of circular bacteriocins 
involves cleavage of the leader peptide, circularization, 
and export to the extracellular space.

Gram-negative bacteria produce both high mole-
cular weight (> 30 kDa) and low molecular weight 
(< 10 kDa) bacteriocins (Rebuffat 2016). The first bac-
teriocin identified from a Gram-negative bacterium 
was colicin, produced by Escherichia coli (Riley 2009). 
Bacteriocins of Gram-negative bacteria are classified 
into two main groups, colicins, and microcins (Fig. 2). 
Genes encoding colicins are found on plasmids whose 
products vary between 20 and 80 kDa. Colicins from 
E. coli inhibits closely related strains of the genus Sal­
monella and other E. coli strains. Colicins are organized 
in three different domains: the translocation domain 
(T) N-terminally located, the receptor binding (R) 
located in the central region, and the cytotoxic domain 
(C) located at C-terminus (Helbig and Braun 2011). 
Microcins are pH and heat-stable antimicrobial pep-
tides ribosomally synthesized, hydrophobic, and low 

Fig. 1. Structure-based classification
of Gram-positive bacteriocins.
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molecular weight. In some cases, microcins require 
post-translational modifications to be active, and they 
do not require a lysis process to be secreted (Baquero 
et al. 2019). Microcin production has been reported 
in several Enterobacteriaceae and some cyanobacteria 
(Rebuffat 2016; Parnasa et al. 2019).

Microcin mJ25 produced by E. coli was initially 
described as a circular peptide; now it is known that 
there is no union between the terminal residues, but 
a union through the lactamic link between the amino 
group (Gly1) and the carboxyl group (Glu8). These 
struc tures are known as “lasso-peptides” and are also 
descri bed in organisms of the genus Streptomyces (Hege-
mann et al. 2015). Other types of high molecular weight 
bacteriocins of Gram-negative bacteria are pyocins 
(type R, F, and S), tailocins, and lectin-like bacterio cins. 
Genes encoding for pyocins are located on the bacterial 
chromosome, and their expression is induced by agents 
that damage DNA by activating the SOS response. 
R-type and F-type pyocins are non-flexible and flexible 
phage tail-like bacteriocins, respectively. The S-type 
pyocin is like the colicins and is formed by two pro-
teins (a big one and a small one) that remain associated 
even during its purification process. The large protein is 
responsible for the antimicrobial activity, and the small 
one has an immune function for the producing bac-
teria (Michel-Briand and Baysse 2002; Atanaskovic and 
Kleanthous 2019; Oluyombo et al. 2019).

Tailocins are bacteriocins like phage tails and dis-
play a rigid or flexible structure, similar to R-type and 

F-type pyocins. Tailocins with contractile and flexible 
tail morphologies are designated as myotailocins and 
siphotailocins, respectively (Yao et al. 2017). These 
bacteriocins have been described in plant-associated 
Pseudomonas and Burkholderia strains, although 
similar bacteriocins are also produced by Clostridium 
difficile, Serratia plymithicum, and Serratia proteamacu­
lans (Gebhart et al. 2015; Ghequire and De Mot 2015; 
Hurst et al. 2018).

Lectin-like bacteriocins (LlpAs) represent another 
type of antimicrobial protein secreted by members of 
the genus Pseudomonas. LlpAs are ~30 kDa proteins 
that resemble monocot mannose-binding lectins 
(MMBL) consisting of two B-lectin domains fol-
lowed by a short carboxy-terminal extension and do 
not contain an immunity protein. They also include 
a  preserved consensus sequence QxDxNxVx neces-
sary for the activity of the bacteriocin. The best exam-
ples of LlpAs include LlpABW11M1 of Pseudomonas 
mosselii, LlpA1Pf-5 of Pseudomonas protegens Pf-5, 
and pyocin L1 of P. aeruginosa (Ghequire et al. 2018a). 
The production of LlpAs has also been reported in 
Burkholderia cepacia strains.

Bacteriocins exert several mechanisms of action 
towards Gram-positive and Gram-negative bacte-
ria (Fig. 3). Class I bacteriocins produced by Gram-
positive bacteria permeabilize bacterial membranes 
through pore-formation, leading to ion leakage and cell 
death. These include bacteriocins produced by Bacil­
lus, Lactococcus, and Pediococcus genera. They cause 

Fig. 2. Structural-based classification of Gram-negative bacteriocins.
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pore-formation by recognizing lipid II or the mannose 
phosphotransferase system (Paiva et al. 2011). Class I 
bacteriocins of Gram-positive bacteria also inhibit cell 
wall synthesis (Abriouel et al. 2011; Sun et al. 2018) 
(Fig. 3a). Class II bacteriocins make pores as described 
by the barrel stave or carpet model. Some class  III 
bacteriocins produced by Bacillus inhibit the activity 
of the phospholipase A2, responsible for membrane 
repair (Abriouel et al. 2011). Class  III bacteriocins, 
like lysostaphin, act directly on the cell wall inhibit-
ing peptidoglycan synthesis without permeabilizing 
the membrane (Mitkowski et al. 2019). The mannose 
phosphotransferase system is involved in recognition 
of some Gram-positive bacteriocins, such as lactococ-
cin  A and pediocin, leading to pore-formation and 
membrane permeabilization (Zhou et al. 2016).

The mechanism of action of Gram-negative bac-
teriocins, such as colicins, is through recognizing cell 
surface receptors of a target cell, through the Tol or 
TonB machinery, as shown in Fig. 3b. Colicins  C 
domain (cytotoxicity domain) is responsible for elimi-
nating other microorganisms through various mecha-
nisms such as membrane permeabilization, nuclease 
activity, and inhibition of peptidoglycan or lipopoly-
saccharide O-antigen synthesis (Budič et al. 2011). 
Salmonella colicins (salmocins) display three mecha-
nisms of action: SalE1a and SalE1b cause pore-forma-
tion in the membrane, SalE2 and SalE7 have DNase 
activity, and SalE3 have RNase activity (Schneider et al. 

2018). Microcins are also membrane-pore formers, 
have DNase or RNase activity, and may inhibit protein 
synthesis (Yang et al. 2014).

The genus Pseudomonas produces high molecular 
weight bacteriocins such as R, F, and S  type pyocins 
(Oluyombo et al. 2018). Besides the type B microcins 
(Ghequire et al. 2018a), tailocins (Ghequire and De Mot 
2015), and LlpAs (Ghequire et al. 2018b). Pyocins and 
tailocins are characterized by having a complex struc-
ture that resembles phage tails (Ghequire and De Mot 
2015; Patz et al. 2019), and the mechanism of action 
is based on the recognition of specific receptors on 
the cell surface causing pore formation, nonspecific 
degradation of nucleic acids or lipid II-degradation 
(Ghequire and De Mot 2018; Patz et al. 2019) (Fig. 3b).

Pyocins have a limited antimicrobial spectrum, 
mainly inhibiting competitors highly related to the 
producer strain (Redero et al. 2018). However, some 
R-type pyocins can inhibit other species such as Campy­
lobacter sp., Neisseria gonorrhea, Neisseria meningiti­ 
des, and Haemophilus ducreyi (Naz et al. 2015). Since 
the mechanism of action of pyocins depends on a cel-
lular receptor, its use has been proposed to replace 
broad-spectrum antibiotics, to reduce the damage that 
antibiotics usually cause to the human microbiome 
(McCaughey et al. 2014).

LlpAs have a selective mechanism of action, differ-
ent from other bacteriocins produced by Pseudomonas 
species. Probably because their structure does not 

Fig. 3. Bacteriocin mechanism of action on a) Gram-positive and b) Gram-negative bacteria.



Bacteriocins as antimicrobials and anticancer drugs2 147

consist of the classic three-domain model present in 
bacteriocins of similar size (T, R, and C). Instead, they 
contain two monocotyledonous mannose-binding lec-
tin (MMBL) domains associate with the recognition 
of BamA (Ghequire et al. 2018a). This protein of the 
outer membrane of Gram-negative bacteria facilitates 
the insertion of other proteins into the cell membrane 
(Noinaj et al. 2014). Although the mechanism of action 
of LlpAs remains unknown, a “killing upon contact” 
mechanism has been suggested (Ghequire et al. 2018a).

Bacteriocins and natural DNA transformation

Bacteria can take up exogenous DNA and incorpo-
rate it into their genome through a process termed com-
petence. Competent bacteria can use absorbed DNA as 
a source of nutrients, DNA reparation, or recombina-
tion with the genome. Natural DNA transformation 
happens when absorbed DNA is integrated into the 
genome (Veening and Blokesh 2017). This process is 
considered the primary mode of horizontal gene trans-
fer (HGT) in bacteria, along with conjugation (direct 
cell to cell transfer of DNA via a specialized conjugal 
pilus) and phage transduction (DNA transfer media-
ted by viruses). Naturally competent bacteria couple 
the DNA-uptake process with other physiological 
responses, such as growth arrest and synthesis of anti-
microbial polypeptides (bacteriocins) (Mignolet et al. 
2018). Bacteria secrete bacteriocins upon entry into the 
competence state to kill surrounding competitors.

The competence pathway in Streptococcus pneu­
moniae is regulated by a secreted peptide pheromone, 
the competence-stimulating peptide (CSP). The pre-
cursor peptide of CSP, ComC, is processed by an ABC 
transporter/protease, ComAB, immediately after the 
double-glycine motif to yield the active CSP (Shanker 
and Federle 2017). Extracellular CSP activates the 
ComCDE two-component signal-transduction path-
way, which turns on the sigma factor gene sigX/comX, 
to activate the expression of over 100  genes upon 
entering the competent state (reviewed by Shanker 
and Federle 2017). At least six CSP-responsive genes 
are involved in fratricide (killing/lytic factors direc- 
ted against non-competent siblings). Among them, 
cibABC encodes a  two-peptide bacteriocin responsi-
ble for lysis of cells lacking the corresponding immu-
nity factor, CibC. The cbpD gene encodes a murein 
hydrolase containing a cytosine, histidine-dependent 
amidohydrolase peptidase. lytA encodes an effector of 
autolysis in S. pneumoniae. Interestingly, this preda-
tion mechanism appears to be restricted to isogenic or 
closely related strains, suggesting that competent cells 
target corresponding cells to acquire homologous DNA 
sequences to maintain genome integrity or acquire new 

gene alleles from siblings. This ability to tackle closely 
related strains would be discussed in the section “Bac-
teriocins as modulators of gastrointestinal microbiota 
and population diversity”. Streptococcus salivarius, on 
the other hand, modules competence and bacteriocin 
production through the ComRS complex, which serves 
as the connector that directly regulates both comX and 
bacteriocin genes (Mignolet et al. 2018). S. salivarius 
bacteriocins have a broad spectrum of bacterial prey 
including the closely related Streptococcus vestibularis, 
more distant streptococci (Streptococcus mutans and 
Streptococcus pyogenes), and opportunistic pathogens 
such as Enterococcus faecalis, L. monocytogenes, and 
S. aureus (Mignolet et al. 2018). 

Bacteriocins as food antimicrobial
and anticancer agents

Bacteriocin applications have been focused primar-
ily on food preservation, either alone or in combination 
with other compounds. The long shelf life of food prod-
ucts relies on adding chemicals, sugars, salts, and other 
preservatives allowed by the regulation. The addition of 
these substances reduces water activity, inhibiting the 
growth of undesirable pathogenic microorganisms that 
can spoil food. However, the addition of these chemi-
cals benefits the industry but not the consumer since 
the continuous consumption of chemical preservatives 
through packaged foods can affect consumers’ health. 
There is an association of these additives with chronic 
degenerative diseases, and the intake of these additives 
can prompt the development of some types of cancer 
(Monteiro et al. 2010; Moubarac et al. 2013). A more 
friendly strategy to preserve food products is the use 
of bacteriocins beneficial for both the food industry 
and consumers, helping to reduce the use of chemical 
preservatives in food (Sarika et al. 2019). The growth 
of pathogens in food can be controlled by the inocula-
tion of bacteriocin-producing lactic acid bacteria or by 
the addition of purified bacteriocins (Silva et al. 2018). 
Bacteriocins have also been added to the coating of 
food packaging to reduce food spoilage (Salgado et al. 
2015; Castellano et al. 2017).

The use of bacteriocins as food preservatives does 
not affect the organoleptic properties of foods. There 
are safe bacteriocins for human consumption, such 
as Enterocin AS-48 (Sánchez-Hidalgo et al. 2011), lac-
ticin 3147 (Mills et al. 2017), and salmocins (Schnei-
der et al. 2018) but only nisin (NisaplinTM, BiosafeTM), 
pediocin PA-1 (MicrogardTM, Alta 2431), sakacin 
(BactofermTM B-2, BactofermTM B-FM) and leucocin A 
(BactofermTM B-SF-43) are commercially used to 
improve shelf-life of food (Vijay Simha et al. 2012; Daba 
and Elkhateeb 2020).
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The Food and Agriculture Organization (FAO) 
sup port the use of probiotics in food systems, since 
pro biotics offer health benefits, especially for the gas-
trointestinal tract. Probiotics play an important role 
in modifying some metabolic pathways that, in turn, 
regulate cell proliferation, apoptosis, differentiation, 
angiogenesis, inflammation, and metastasis, which are 
relevant aspects to prevent the development of cancer 
(Bermudez-Brito et al. 2012).

Bacteriocins have shown cytotoxic activity against 
cancer cells, and therefore they could be considered 
tools to develop new anticancer drugs (Baindara et al. 
2018). The charge of normal cell membranes is neu-
tral, while cancer cells have a negative charge due to 
the high content of anionic phosphatidylserine, o-gly-
cosylated mucins, sialylated gangliosides, and hepa-
rin sulfates. Bacteriocins, being cationic peptides, can 
preferentially bind to the negatively charged membrane 
of cancer cells compared to normal cells. Some bac-
teriocins with anticancer activities are colicins, which 
have shown cytotoxic activity against various human 
tumor cell lines such as breast cancer, colon cancer, 
and bone cancer (Kaur and Kaur 2015). Some exam-
ples of the potential applications of bacteriocins are 
shown in Table I.

The potential therapeutic uses of bacteriocins 
produced by lactic acid bacteria have increased over 
time. López-Cuellar et al. (2016) found that 37% of the 
investigations on bacteriocins were focused on medi-
cal applications including cancer, systemic infections, 
stomatology, skincare, and contraceptives. 29% of stud-
ies focused on food preservation, 25% on bio-nanoma-
terials, and 9% within veterinary. The number of pat-
ents on bacteriocins has also increased. From 2004 to 
2015, 245 bacteriocin patents were issued, 31% related 
to the biomedical field, 29% to food preservation, 5% 
to veterinary medicine, 13% to production and puri-
fication process, and 16% to molecular modifications 
in producer strains. The smallest proportion concerns 
bio-nanomaterials and industrial applications.

Bacteriocins in agriculture

The indiscriminate use of agrochemicals has caused 
severe damage to human health and the environment. 
This problem aims to find alternatives to fight pests 
and diseases in a more environmentally friendly way. 
Bacteria that produce inhibitory substances have been 
used as inoculants to indirectly stimulate the growth of 
crops, fighting the phytopathogens. Plant growth-pro-
moting rhizobacteria (PGPR) are generally marketed 
in the form of mono or multi-inoculants that include 
bacteria such as Streptomyces venezuelae, Gluconace­
tobacter diazotrophicus, Burkholderia sp., Azospirillum 

brasilense, P. protegens, Pseudomonas putida, among 
others. Most of these formulations have been traded 
to promote plant growth and not fight plant pathogens 
(Cesa-Luna et al. 2020). Therefore, little efforts have 
been focused on applying of bacteriocins for plant dis-
ease biocontrol, and hence their production by PGPR 
is poorly understood.

Some examples of bacteriocins applied to agricul-
ture are agrocin 84 and thuricin 17. Agrocin 84 is pro-
duced by Agrobacterium radiobacter K84 and is useful 
to kill Agrobacterium tumefaciens, the causal agent of 
crown gall disease in plants (Kim et al. 2006). Thu-
ricin  17 is produced by B. thuringiensis NEB17, this 
bacteriocin is a plant biostimulant with no harmful 
effects on nodulating rhizobia or other PGPR (Nazari 
and Smith 2020). Pseudomonas syringae pv. ciccaronei 
strain NCPPB2355 produces an inhibitory bacteriocin 
against P. syringae subsp. savastanoi, the causal agent 
of olive knot disease. Other important bacteriocins 
are those produced by the genus of Pseudomonas and 
Bacillus (Table  II). These bacteriocins inhibit one of 
the primary phytopathogenic fungi, Fusarium, which 
can infect different types of plants, including celery, 
onion, cabbage, banana, cucumber, tomato, eggplant, 
cantaloupe, watermelon, spinach, among others. Direct 
application of bacteriocin induces a resistance mecha-
nism in plants against pathogens and abiotic stresses. 
Application of thuricin 17 on plants enhanced produc-
tion of phenolics, phenylalanine ammonia-lyase activ-
ity, and antioxidant defense (Nazari and Smith 2020).

Bacteriocins as modulators of gastrointestinal
microbiota and population diversity

The autochthonous bacteria that colonize the entire 
human gastrointestinal tract, from the mouth to the 
colon, confer various physiologic benefits to the host. 
The prokaryotic symbiont population in humans 
ranges from 103–105 CFU/ml in the jejunal lumen) of 
healthy individuals to 1011–1012 CFU/ml in the colon, 
gut microbiota, prevents pathogen growth in the gas-
trointestinal tract (Sundin et al. 2017). This regulation 
is given through various microbial mechanisms, one 
of them is the release of bacteriocins, which prevent 
dysbiosis and consolidate the homeostasis of the gastro-
intestinal microbiota. The homeostatic balance in the 
human gut microbiota has become a significant public 
health problem due to changes in eating habits, type 
of diet, and administration of broad-spectrum anti-
biotics (Cotter et al. 2013). Ultra-processed food intake 
has increased saturated fats, omega-6 fatty acids, trans-
fatty acids, and simple carbohydrates in the human diet 
while it has decreased the intake of omega-3 fatty acids, 
fiber, and complex carbohydrates. This diet high in fat 



Bacteriocins as antimicrobials and anticancer drugs2 149

1. Food preservation
AMA-K, Leucocin K7 L. plantarum AMA-K Enterococcus spp., E. coli,  Amasi, fermented (Todorov 2008)
  K. pneumoniae, Listeria spp. milk product
Aureocin A70 S. aureus A70 L. monocytogenes Dairy product (Carlin Fagundes et al. 2016)
Bacteriocin 32Y L. curvatus L. monocytogenes Pork and beef (Gálvez et al. 2007)
Bacteriocin GP1 L. rhamnosus GP1 Staphylococcus sp.,  Fish (Sarika et al. 2019)
  Aeromonas sp., Lactobacillus sp.,
  Pseudomonas sp., Vibrio sp.
Bovicin HC5 + Nisin Streptococcus bovis HC5 L. monocytogenes, S. aureus Fresh cheese (Pimentel-Filho et al. 2014)
Divergicin M35 Carnobacterium L. monocytogenes Smoked fish (Benabbou et al. 2020)
 divergens M35
Enterocin E. faecium FAIR-E 198 Listeria spp. Feta cheese (Sarantinopoulos et al. 2002)
Enterocin 416K1 E. casseliflavus IM 416K1 L. monocytogenes NCTC 10888 Cottage cheese (Iseppi et al. 2008)
Enterocin AS-48 Enterococcus sp. L. monocytogenes, B. cereus Cheese, vegetable, (Gálvez et al. 2007)
   purees, and soups
H1, H2, H3, H4 Bacillus sp. V. alginolyticus, Aeromonas Antimicrobial (Feliatra et al. 2018)
   hydrophilla, P. stutzeri used in fish
Lacticin 3147 L. lactis L. monocytogenes  Matured and  (Mills et al. 2017)
   cottage cheese
Lacticin NK24 L. lactis Leuconostoc mesenteroides Seafood (Lee and Paik 2001)
  KCCM 11324
Leucocin K7 L. mesenteroides K7 L. monocytogenes Dairy product (Shi et al. 2016)
Mecedocin S. macedonicus C. tyrobutyricum LMG 1285T Kasseri cheese (Anastasiou et al. 2009)
 ACA-DC 198
NE L. gasseri K7 (Rifr), C. tyrobutyricum Semi-mature cheese (Bogovič Matijašić 
 L. gasseri LF221(Rifr)   et al. 2007) 
Nisin Lactococcus spp., L. monocytogenes, Clostridium Dairy products, (Juturu and Wu 2018)
 Streptococcus spp. botulinum, S. mutans, meat, seafood
  L. innocua, S. aureus, 
  S. pneumoniae, B. cereus 
Pediocin PA1 P. acidilactici L. monocytogenes Dairy products, meat (Liu et al. 2008)
Plant-made salmocins Salmonella spp. S. enterica Red meat (Schneider et al. 2018)
Plant-made colicins E. coli E. coli, P. aeruginosa, Meat, fruits,  (Hahn-Löbmann et al. 2019)
(GRN 676, GRN 593)  Salmonella spp. or vegetables
Psicolin 126, C. maltoaromaticum L. monocytogenes Ready-to-eat meat (Liu et al. 2014)
carnocyclin A   products
Reuterin L. reuteri E. coli, S. aureus, Food preservation (Helal et al. 2016)
  Candida albicans
Sakacin P L. sakei L. monocytogenes Beef and Salmon (Teneva-Angelova et al. 2018)
Thuricin BtCspB B. thuringiensis B. cereus Food preservation (Huang et al. 2016)
   and disease asso-
   ciate to B. cereus

2. Bacterial infections
ABP118 L. salivarius subsp. Bacteroides Antimicrobial agent (Riboulet-Bisson et al. 2012)
 salivarius UCC118
Colicins Js and Z  E. coli Enteroinvasive, E. coli (EIEC) Gastrointestinal Bosák et al. 2021
  and Shigella infections 
Divercin V41 C. divergens L. monocytogenes Antimicrobial agent (Rihakova et al. 2010)
Duramycin Streptomyces B. subtilis Antimicrobial, anti- (Huo et al. 2017)
 cinnamoneus  viral, immunomodu-
   lation, ion channel
   modulation,  treat-
   ment of atheroscle-
   rosis and cystic
   fibrosis

Table I
Bacteriocins with potential application as therapeutic and food preservatives.

Bacteriocin Producer bacteria Target microorganism Use Reference
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Enterocin CRL35 E. mundtii L. monocytogenes Gastrointestinal (Salvucci et al. 2012)
   infections
Epidermin and mers- S. epidermidis P. acnes Acne, folliculitis. (Gillor et al. 2008)
acidin-like peptides
Gallidermin/ S. gallinarum S. epidermidis, S. aureus Skin infections or  (Bengtsson et al. 2018;
epidermin   associated with Bonelli et al. 2006)
   implants and
   prostheses
Gassericin E L. gasseri EV1461 Pathogens associated Vaginal infections (Maldonado-Barragán
  with vaginosis  et al. 2016)
Haemocin type B Haemophilus H. influenza Respiratory infections (Latham et al. 2017)
 haemolyticus
Lactocin 160 L. rhamnosus G. vaginalis Urogenital tract (Turovskiy et al. 2009)
   infections,
   bacterial vaginosis
Laterosporulin10 Brevibacillus sp. S. aureus, Mycobacterium Human microbial (Baindara et al. 2016)
 strain SKDU10 tuberculosis (Mtb H37Rv), pathogens
  M. smegmatis MC2 155
Mersacidin B. amyloliquefaciens Methicillin-resistant Skin infection (Kruszewska et al. 2004)
  S. aureus (MRSA)
Microcin J25 E. coli S. enterica, E. coli, S. flexnerii Gastrointestinal (Dobson et al. 2012)
(lasso-peptide)   infections
Nisin A, Nisin Z, L. lactis S. mutans, S. aureus, E. faecalis, Gastrointestinal, (Shin et al. 2016)
Nisaplin  S. mastitis, C. albicans respiratory, and skin
   infections, oral health
Oralpeace TM L. lactis S. mutans, P. gingivalis Dental caries,  gingivitis (Perez et al. 2014)
(encapsulated nisin)
Piscicolin 126 Carnobacterium spp. Listeria spp. Antimicrobial agent (Miller and 
    McMullen 2014)
Plantaricin 423 L. plantarum Listeria spp. Antimicrobial agent (Guralp et al. 2013)
PLNC8 αβ L. plantarum Staphylococcus sp., Antimicrobial agent (Bengtsson et al. 2020)
  Porphyromonas gingivalis
R-pyocins P. aeruginosa P. aeruginosa Antimicrobial agent (Redero et al. 2018)
TOMM Streptolysin S S. pyogenes Clostridium sp., Listeria sp. Hemolytic and cytotoxic (Molloy et al. 2015)
(SLS)   activity against macro-
   phages and neutrophils

3. Anticancer drugs
Cancer cell lines

Azurin P. aeruginosa MCF-7, UISO-Mel-2, osteosarcoma (U2OS) (Nguyen and Nguyen
   2016)
Bovicin HC5 S. bovis HC5 MCF-7, HepG2 (Rodrigues et al. 2019)
Colicin E3 E. coli P388, HeLa, HS913T (Kohoutova et al. 2014
Duramycin S. cinnamoneus AsPC-1, Caco-2, Colo320, CT116, JJN3, Lovo, MCF-7, (Rodrigues et al. 2019)
  MDA-B-231, MIA PaCa-2 
Enterocin LNS18 E. thailandicus HepG2 (Al-Madboly et al. 2020)
Laterosporulin LS10 Brevibacillus latero­ HeLa, MCF-7, H1299, HEK293T, HT1080 (Baindara et al. 2016)
 sporus SKDU10
M2163, M2386 L. casei ATCC 334 SW480 (Rodrigues et al. 2019)
Microcin E492 K. pneumoniae HeLa, Burkitt lymphoma variant (RJ2.25) (Kaur and Kaur 2015)
Nisin A L. lactis Head and neck squamous cell carcinoma (HNSCC) (Shin et al. 2016)
Pediocin K2a2-3 P. acidilactici K2a2-3 HT2a, HeLa (Villarante et al. 2011)
Pediocin CP2 P. acidilactici HeLa, MCF-7, HepG2, murine myeloma (Sp2/0-Ag 14) (Kumar et al. 2012)
 CP2 MTCC501

Table I. Continued

Bacteriocin Producer bacteria Target microorganism Use Reference
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NE – non specified

Pep27anal2 S. pneumoniae Jurkat, HL-60, AML-2, MCF-7, SNU-601 (Rodrigues et al. 2019)
Plantaricin A L. plantarum C11 GH4, Reh, Jurkat, PC12, N2A (Sand et al. 2013)
Plantaricin P1053 L. plantarum PBS067 E705 (De Giani et al. 2019)
Pyocin S2 P. aeruginosa 42A HepG2, Im9, murine tumor (mKS-A TU-7),  (Abdi-Ali et al. 2004)
  human fetal foreskin fibroblast (HFFF)
Sungsanpin Streptomyces spp. A549 (Um et al. 2013)
Smegmatocin M. smegmatis 14468 HeLa, AS-II, HGC-27, mKS-A TU-7 (Kaur and Kaur 2015)

Table I. Continued

Bacteriocin Producer bacteria Cancer cell lines Reference

and carbohydrates and low in micronutrients can dis-
turb the human microbiota with concomitant meta-
bolic disorders (Miclotte and Van de Wiele 2020).

Probiotics can colonize, at least temporally, the 
human gastrointestinal tract due to the efficient com-
petition mediate by bacteriocin production. Thus, the 
intake of Lactobacillus species in probiotherapy has 
shown health-promoting effects on treating inflam-

matory gastrointestinal diseases like constipation, 
diarrhea, irritable bowel syndrome, gastritis, gastroe-
sophageal reflux, ulcerative colitis syndrome, Crohn’s 
disease, among others (Kumar et al. 2016). Bacteriocins 
can play an essential role in the homeostasis of different 
subpopulations of microbial communities. For example, 
in the relationship of certain bacteriocin-producing, 
sensitive, and resistant bacterial populations bacteria 

Amylocyclin B. amyloliquefaciens Ralstonia solanacearum and X. campestris (Scholz et al. 2014)
Bacteriocin 32Y P. aeruginosa RsB29 Fusarium sp. (Sindhu et al. 2016)
Carocin D P. carotovorum subsp. P. carotovorum subsp. Carotovorum (Grinter et al. 2012;
 carotovorum  Roh et al. 2010)
Enterocin UNAD 046 E. faecalis B. theobromae, A. niger, P. expansum, (David and Onifade, 2018)
  P. ultimum.
Fluoricin BC8 P. fluorescens BC8 P. solanacearum (Sindhu et al. 2016)
Gluconacin G. diazotrophicus PAL5 X. albilineans and X. vasicola pv. vasculorum. (Oliveira et al. 2018)
LlpA P. putida BW11M1 P. syringae (Parret et al. 2005)
Morricin 269, B. thurigiensis Trichoderma spp., A. nodulans, F. graminis, (De La Fuente-Salcido et al. 2008;
Kurstacin 287,   F. oxysporum, Rhizopus sp., Mucor rouxii  Salazar-Marroquín et al. 2016)
Kenyacin 404,
Entomocin 420,
Tolworthcin 524 
NE P. syringae pv. ciccaronei  P. syringae subsp. savastanoi (Lavermicocca et al. 2002)
BLIS RC-2 B. amyloliquefaciens RC-2 R. necatrix, P. oryzae, A. tumefaciens, (Abriouel et al. 2011)
  Xanthomonas campestris pv. campestris,
  C. dematium
NE B. gladioli Tatumella ptyseos (Marín-Cevada et al. 2012)
BL8 B. thuringiensis subsp. A. niger, A. fumigatus, A. flavus, (Subramanian and Smith 2015)
 tochigiensis HD868 Cryphonectria parasitica, F. oxysporum,
  Penicillium digitatum.
Plantazolicin B. velezensis FZB42 B. anthracis and nematodes. (Chowdhury et al. 2015)
 (B. amyloliquefaciens subsp. 
 plantarum)
Putidacin L1 P. protegens, P. putida P. syringae (Rooney et al. 2020)
Rhizobiocin Rhizobium spp. P. savastanoi (Kaur Maan and Garcha 2018)
SF4c tailocins P. fluorescens SF4c X. vesicatoria (Príncipe et al. 2018)
Syringacin M P. syringae pv. tomato DC3000 P. syringae (Li et al. 2020)

Table II
Biocontrol potential of bacteriocin-producing microorganisms in agriculture.

NE – non specified

Bacteriocin Producer bacterium Phytopathogen Reference
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can interact with each other in a set of incessant battles 
without a clear winner (Kerr et al. 2002). 

In some cases, the growth rate of a resistant popula-
tion can be higher than that of the bacteriocin-produc-
ing population (P), which generally possess a plasmid 
with genes encoding the bacteriocin and bacteriocin-
specific immunity protein that make the bacteriocin-
producing population immune to its bacteriocin. Still, 
at the same time, the resistant population (R) has 
a slower growth rate than that of the sensitive popula-
tion (S). The susceptible population has an advantage 
over the resistant population because sensitive bacteria 
have a higher growth rate. The resistant population has 
an advantage over the bacteriocin-producing popula-
tion because of its higher growth rate. And the bacte-
riocin-producing population can displace susceptible 
populations because bacteriocin-producing bacteria 
can kill sensitive bacteria making the three types of 
bacterial populations coexist in a balance of subpo-
pulations preserving the diversity of the community 
(Kerr et al. 2002).

The bioinformatic analysis of bacteriocins encoded 
within 317 microbial genomes found in the human 
intestine revealed 175 bacteriocins in Firmicutes 
(which includes LAB), 79 in Proteobacteria, 34 in Bac-
teroidetes, and 25 in Actinobacteria (Drissi et al. 2015). 
The analysis showed that bacteriocins produced by 
the intestinal bacteria display wide differences, in the 
size and amino acid composition, compared to other 
bacteriocins. These bacteriocins contain less aspartic 
acid, leucine, arginine, and glutamic acid but more 
lysine and methionine. Depending on their α-helical 
structure, charge, and hydrophobicity, they may have 
a broader spectrum of activity (Zelezetsky and Tossi 
2006) but, in turn, lower antimicrobial activity and, 
therefore, they can better modulate microbial popu-
lations (Drissi et al. 2015). The microbial community 
that inhabits the human gut appears to impart specific 
functions to human metabolism and health by inter-
connecting signals from the brain, the immune system, 
the endocrine system, and the gut microbiota itself 
(Vivarelli et al. 2019). So, depending on the type of bac-
teria colonizing the gastrointestinal tract will determine 
the type of signaling molecules released and, therefore, 
the impact on host health and disease. That is why the 
microbial diversity of microbiota is tightly regulated. 
An example of this type of regulation exerted by bac-
teriocins is the effect of plantaricin P1053 produced by 
Lactobacillus plantarum strain PBS067; which exhib-
ited a broad-spectrum of antimicrobial activity against 
Gram-positive and Gram-negative bacteria. Further-
more, plantaricin P1053 showed an improvement in the 
viability of healthy cells and a proliferation reduction 
of cancerogenic human intestinal cells. The mechanism 
involved in this case was through the epidermal growth 

factor receptor (EGFR) pathways (De Giani et al. 2019). 
Bifido bacterium longum subsp. longum NCC2705 pro-
duces the bacteriocin serpin, which is a protease inhibi-
tor that interacts directly with the host factors. Serpin 
inhibits pancreatic and neutrophil elastases by medi-
ating some gastrointestinal anti-inflammatory effects 
(Ivanov et al. 2006). The production of bacteriocins by 
the microbiota that inhabits the human gut affects the 
individual’s metabolic processes, whether it improves 
health or causes dysbiosis and disease Therefore, bac-
teriocins production by the microbiota is tightly regu-
lated. One way of exploiting the bacteriocin potential of 
prevailing bacterial commensals to cure multiresistant 
infections is to stimulate the endogenous bacteriocin 
producers at specific times and locations. S. salivarius 
population, for example, produces bacteriocins of high 
potency against infectious pathogens and is dominant 
and genetically diverse in the human digestive tract 
(Hols et al. 2019). Bacteriocin-related genes of S. sali­
varius can be activated upon addition of short ComS 
pheromone into the culture medium (Mignolet et al. 
2018). Thus pheromone-based mobilization of bacteri-
ocins in the commensal microbiota could be achieved 
in vivo by the addition of ComS pheromone which 
complexes with the ComR sensor activating the master 
regulator of competence (ComX), and coupling compe-
tence and predation response in S. salivarius (Hols et al. 
2019). Nevertheless, oral administration of signaling 
pheromones remains elusive. To minimize environ-
mental influences (i.e. resist most digestive proteases, 
the stomach barrier, and low solubility of signaling 
pheromones) and ensure the activating pheromone 
efficiency in vivo, more advanced enabling formula-
tions to improve oral bioavailability is required.

A multidrug-resistant E. faecalis strain was actively 
killed by commensal enterococci. A heptapeptide phe-
romone, cOB1, produced by native E. faecalis; was 
involved in the killing of multidrug-resistant E. faecalis 
strain V583, the killing of V583, resulted from lethal 
cross-talk between accumulated mobile elements 
(Gilmore et al. 2015). Since multidrug-resistant Entero­
coccus possessed the limited ability to grow in the pres-
ence of commensal Enterococcus strains due to the pro-
duction of peptide pheromones. We could hypothesize 
that infections caused by MDR strains can be fought 
by the same genera commensal strains using the suit-
able pheromone to activate the killing response. MDR 
enterococci colonize the patient after perturbating the 
native flora by antibiotic treatment when commensal 
enterococci strains are excluded. Therefore, a potential 
therapy could be the formulation of enterococci native 
strain along with the signaling pheromone. Currently, 
there is controversy over the adequate use of probio - 
the rapy, more research must be done about whether 
probiotics are helpful and safe for various health condi-
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tions. We still do not know the concentrations neces-
sary to benefit healthy and sick individuals and the time 
of probiotics intake to improve individual health. 

Bacteriocins commercially available:
a patent perspective

According to the World Intellectual Property 
Organization (WIPO), over the last 30  years, more 
than 800 patent applications with the term “bacterio-
cin” in title or abstract were published, while Espacenet 
website reports more than 8900. Fig. 4 shows the pat-
ents published between January 1, 2000, and August 7, 
2020, using the Patent Inspiration search engine with 
the term “bacteriocin”. Over the last 20 years, China has 
published 234  patents, followed by the United States 
with 132, while Mexico only published 17 patents 
(Fig. 4). Among these patents, 312 (36.4%) are associ a- 
 ted with nisin and lactic acid bacteria.

Bacteriocins have fascinating properties concerning 
their size, structure, mechanism of action, inhibitory 
spectrum, and immunity mechanisms that endorse 
them with market potential. However, just four bacte-
riocin formulations are commercially available: nisin 
(NisaplinTM, BiosafeTM, OralpeaceTM), pediocin PA-1 
(MicrogardTM, Alta 2341), sakacin (BactofermTM B-2, 
BactofermTM B-FM) and leucocin A (BactofermTM B-SF-
43) are mainly used as food preservatives in the United 
States and Canada (Daba and Elkhateeb 2020; Radaic 

et al. 2020). Other FDA-approved bacteriocins, with the 
intended use as an antibacterial for food, are colicins, 
salmocins, and Clostridium phage lysins, but they are 
not in the market yet (Hahn-Löbmann et al. 2019). 
One limitation of using purified bacteriocins in the 
food industry could be the high cost of production and 
purification compared to the price of food additives. It 
is more feasible to produce formulations of whole bac-
teria with their metabolites and use them as “protective 
cultures” on foods. Thus, several bacteria that produce 
bacteriocin have obtained the GRAS status and are used 
commercially as a preservative in a wide range of food 
products or as probiotics. In the list is Carnobacterium 
divergens M35, Bacillus coagulans GBI-30, Bacillus 
subtilis strain SG 188, Lactobacillus plantarum Lp-115, 
Lactobacillus fermentum CECT5716, Lactobacillus par­
acasei strain F19, Lactobacillus plantarum strain 299v, 
Bacillus coagulans SNZ1969, Lactobacillus acidophilus 
DDS-1, Bifidobacterium animalis subsp. lactic UABla-
12, Bifidobacterium longum BB536, Bifidobacterium 
bifidum Rosell®-71, Bifidobacterium longum ssp. infan-
tis Rosell®-33, Lactobacillus helveticus Rosell®-52, Lacto­
bacillus rhamnosus LGG®, Lactobacillus curvatus DSM 
18775, and Streptococcus salivarius K12. An alternative 
to the costly fermentation production and purification 
of bacteriocins from a natural producer strain is chemi-
cal synthesis. Advances in solid-phase peptide che- 
mical synthesis, lower price for reagents and building 
blocks, has made the chemical synthesis of bacteriocins 
more attractive and competitive. Furthermore, through 

Fig. 4. Timeline of bacteriocin patents reported worldwide from January 1, 2000 to August 7, 2020. Countries with the highest number 
of reported patents per year are shown. The figure was generated with the Patent Inspiration search engine

(https://www.patentinspiration.com).
CN – China, US – United States, KR – Korea, RU – Russian Federation, UA – Ukraine, CA – Canada, JP – Japan, AU – Australia, NZ – New Zealand, 
GE – Germany, FR – France, TW – Taiwan, AT – Austria, PL – Poland, ES – Spain, AR – Argentina, MX – Mexico, BR – Brazil, DK – Denmark, 

CZ – Czech Republic, HU – Hungary, ZA – South Africa, SE – Sweden, IL – Israel, GB – United Kingdom.
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chemical approaches, it is possible to perform amino 
acid substitution, use non-natural or modified residues, 
and make backbone and side-chain modifications to 
improve potency or stability of bacteriocins (Bédard 
and Biron 2018). Those advanced chemical methods 
will surely enable the screening and identification of 
more potent or stable bacteriocins.

Bacteriocin formulations can be used as nutritional 
supplementation. Few in vivo experiments on bacte-
riocin dietary formulations have described the effects 
of bacteriocins on the gastrointestinal microbiota of 
mice, rats, rabbits, ruminants, fish, and poultry. A mul-
tispecies probiotic combination (Lactobacillus reuteri, 
Enterococcus faecium, B. animalis, Pediococcus acidi­
lactici, and Lactobacillus salivarius) increased nutri-
ent digestibility, digestive enzyme activities, and anti-
inflammatory effect in broilers (Palamidi et al. 2016). 
The efficacy of L. acidophilus, B. subtilis, and Clostri­
dium butyricum supplementation in broilers improved 
growth performance, ileal amino acids digestibility, and 
humoral immunity (Zhang and Kim 2014). The addi-
tion of nisin (alone or in combination with salinomycin 
or monensin) to broilers’ diet was associated with an 
apparent nutrient digestibility (Kierończyk et al. 2017). 
Dietary supplementation with Paenibacillus ehimensis 
NPUST1 (bacteriocin-like activities against Aeromonas 
hydrophila) improved the growth performance, immu-
nity, and disease resistance in Nile tilapia (Chen et al. 
2019). Altogether, these reports indicate the potential 
of bacteriocins as nutritional supplementation. 

Compared to the food industry, the medical field 
could represent a higher profit for the use of bacte-
riocins. However, to exploit the full potential of bac-
teriocins in the medical industry, they must overcome 
some drawbacks such as sensitivity to proteases, immu-
nogenicity issues, and the development of bacteri-
ocin resistance by pathogenic bacteria. In this regard, 
advanced chemical approaches can be used to make 
disulfide bridges, head-to-tail macrocyclization, N-ter-
minus formylation, amino acid substitutions, and other 
modifications; to make bacteriocins more potent and 
stable, enabling them to surpass their current draw-
backs (Bédard and Biron 2018). Another factor that 
prevents the commercial use of bacteriocins in medical 
applications might be attributed to the low approval of 
the regulatory process. Over the last decade, the num-
ber of in vivo trials has increased, but clinical appli-
cation of bacteriocins requires more investigation to 
determine their efficacy, stability, and kinetic properties 
in/on the human body. For example, nisin ZP and nisin 
AP, significantly reduced the tumor volume in mouse-
induced oral cancer. Lacticin 3147 reduced S. aureus 
Xen 29 growth and prevented dissemination of the 
pathogen in the spleen, liver, and kidney of a murine 
model. Salivaricin prevented Candida albicans coloni-

zation in the oral cavity of a mouse model. ESL5 has 
been applied as a lotion in a patient with inflammatory 
acne lesions caused by Propionibacterium acnes (López-
Cuellar et al. 2016; Soltani et al. 2021). Lantibiotics 
such as nisin, clausin, and amyloliquecidin (AmyA) 
are effective in treating S. aureus-induced skin infec-
tion in mice (van Staden et al. 2016). AS-48 prevents 
and treats skin diseases, even with multi-drug resistant 
microorganisms, and has the potential as a leishmani-
cidal agent (Cebrian et al. 2019). Despite their thera-
peutic possibilities, bacteriocins have not yet entered 
into clinical use, and only a limited number have been 
selected for tests in clinical trials. NAI-107 (Microbis­
pora corallina) and mutacin 1140 (S. mutans JH1000) 
are at the late preclinical phase; NVB302 and Moli1901 
(Actinoplanes liguriae NCIMB41362) have completed 
phase I and phase II clinical trials (for clinical studies, 
see Ongey et al. 2017; Soltani et al. 2021). Finally, apart 
from those technical limitations mentioned, several fac-
tors not covered in this review preclude most patented 
products make it to market.

Conclusions

Bacteriocins have become an attractive tool to pre-
serve food and improve human health. Bacteriocins 
can eliminate specific pathogen microorganisms while 
favoring the preservation of other populations. Since the 
impact of bacteriocins on each microbial community is 
not well understood yet, there are limitations to exploit 
all their potential. It is necessary to continue performing 
rigorous research focused on developing antimicro bials, 
anticancer agents, and microbiota modulators before 
bacteriocins can be available to consumers.
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