Polish Journal of Microbiology
CONTENTS

ORIGINAL PAPERS

Prevalence of multi-drug resistant Mycobacterium tuberculosis in Khyber Pakhtunkhwa – a high tuberculosis endemic area of Pakistan
ALI S., KHAN M.T., KHAN A.S., MOHAMMAD N., KHAN M.M., AHMAD S., NOOR S., JABBIA A., DAIREE C., HASSAN E 133

PCR-based screening approach: a rapid method to detect the biosynthetic potential of antimicrobials in actinobacterial strains
NOUREEN N., CHEEMA M.T., ANWAR S., HASNAINE S., SAJID J. ... 139

Characterization of microbial diversity and community structure in fermentation pit mud of different ages for production of strong-aroma Baijiu

Comparison of rapid and routine methods of identification and antibiotic susceptibility testing of microorganisms from blood culture bottles
AKGUN S., SAYINER H.S. .. 165

The resurgence of measles infection and its associated complications in early childhood at a tertiary care hospital in Peshawar, Pakistan
ILYAS M., AFZAL S., AHMAD J., ALGHAMDI S., KHURRAM M. ... 177

A current microbiological picture of Mycobacterium isolates from Istanbul, Turkey
SUMBUL B., DOYMAZ M.Z. .. 185

Luffa cylindrica immobilized with Aspergillus terreus QMS-1: an efficient and cost-effective strategy for the removal of Congo red using stirred tank reactor

Lactobacillus fermentum JX306 restrain D-galactose-induced oxidative stress of mice through its antioxidant activity
ZHANG D., LI C., SHI R., ZHAO F., YANG Z. .. 205

Performance evaluation of different commercial serological kits for diagnosis of acute hepatitis E viral infection
ZHANG Q., ZONG X., LI D., LIN J., LI L. ... 217

N-acetylcysteine (NAC) attenuating apoptosis and autophagy in RAW264.7 cells in response to incubation with mycolic acid from bovine Mycobacterium tuberculosis complex
LIN X., WEI M., SONG F., XUE D., WANG Y. ... 223

SHORT COMMUNICATIONS

Extensively drug-resistant Acinetobacter baumannii belonging to international clone II from a pet cat with urinary tract infection; the first report from Pakistan
TAJ Z., RASOOL M.H., ALMATROUDI A., SAQALEIN M., KHURSHID M. .. 231

Effect of Chlorella vulgaris on growth and photosynthetic pigment content in Swiss chard (Beta vulgaris L. subsp. cicla)
HAJNAL-JAFARI T., SEMAN V., STAMENO D., DURIC D. ... 235

INSTRUCTIONS FOR AUTHORS

Instructions for authors: https://www.exeley.com/journal/polish_journal_of_microbiology
Prevalence of Multi-Drug Resistant Mycobacterium Tuberculosis in Khyber Pakhtunkhwa – A High Tuberculosis Endemic Area of Pakistan

SAJID ALI*, MUHAMMAD TAHIR KHAN2, ANWAR SHEED KHAN3, NOOR MOHAMMAD4, MUHAMMAD MUMTAZ KHAN4, SAJjad AHMAD4, SADIQ NOOR4, ABDUL JABBAR4, CANTILLON DAIRE5 and FARIHA HASSAN1

1 Quaid-i-Azam University, Islamabad, Pakistan
2 Capital University of Science and Technology, Islamabad, Pakistan
3 Provincial TB Control Program, Khyber Pakhtunkhwa, Pakistan
4 University of Haripur, Khyber Pakhtunkhwa, Pakistan
5 Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom

Submitted 24 October 2019, revised 20 December 2019, accepted 8 January 2020

Abstract

Anti-tuberculosis therapy involves the combination of drugs to hamper the growth of Mycobacterium tuberculosis (MTB). The emergence of multidrug-resistant tuberculosis (MDR-TB) is a global concern. Pakistan has been ranked 5th position in terms of a high burden of MDR-TB in the world. The aim of the current study was to investigate the prevalence of drug resistance in MTB in Khyber Pakhtunkhwa. Random samples were collected from 25 districts using the simple random sampling formula. All samples were processed in a biosafety level 3 laboratory for culture and drug susceptibility testing. Among 5759 presumptive tuberculosis (TB) cases, 1969 (34%) were positive. The proportion of TB was higher in females (39%) than males (29%), thus it represents a significant association between gender and tuberculosis (p<0.05). People ages between 25 to 34 years were more likely to be infected with MTB (40%). Drug-resistant profile showed 97 (4.9%) patients were infected with MDR-TB. Streptomycin resistance was the highest and was observed in 173 (9%) isolates followed by isoniazid in 119 (6%) isolates. The lowest resistance was observed to pyrazinamide (3%). The prevalence of MDR-TB (10.4%) among patients that previously received anti-tuberculosis treatment is seemingly high. A large-scale drug resistance survey is required to evaluate the drug resistance for better management of tuberculosis.

Key words: tuberculosis, MDR MDR-TB, multi drug-resistant TB

Introduction

Tuberculosis (TB) is a pre-historic disease caused by Mycobacterium tuberculosis (MTB) (Daniel 2006). Although there are more than 150 species of Mycobacterium sp., MTB is still the most dominant and prevailing member of this genus all over the world, accounting for 10 million deaths in 2019 (WHO 2019).

The World Health Organization (WHO) declared TB as a global emergency in 1993 (Grange and Zumla 2002). Despite significant medical and social interventions, TB consistently affects vulnerable populations across the world and remains a leading global public health problem. Treatment of drug-susceptible TB takes six months while treatment of rifampicin-resistant TB (RR-TB) and multidrug-resistant TB (MDR-TB) requires a long therapy for up to two years (WHO 2019).

Globally, an 85% successful treatment rate has been reported for drug-susceptible MTB. The emergence of drug resistance, however, still poses a threat to global efforts. The WHO estimated 10.4 million new TB cases consist of 490 000 multidrug-resistant TB and 110 000 rifampicin-resistant TB. Five countries such as India, China, Indonesia, Philippines, and Pakistan are accounting for 56% of TB burden. Despite the development of rapid molecular tools, only 37% of MDR-TB were reported globally which shows laboratory gaps. China, India, and Russia reported 47% of the total global MDR/RR-TB cases. Pakistan is a high TB endemic country, standing at 5th position in the list.
of 30 high burden countries (HBC) with an estimated 518,000 TB cases including 15,000 MDR-TB. The estimated proportion of MDR-TB is 4.2% in new patients and 16% in the previously treated patients (WHO 2019). According to the drug resistance survey conducted in 2012, the prevalence of MDR-TB was 3.7% in newly diagnosed TB cases and 18.1% among previously treated TB cases (Tahseen et al. 2016). KPK is one of the four provinces of Pakistan that contributes a proportion of 11.9% in the total national population with an estimated 270 TB cases per 100,000 population (NTP 2014). Patients with drug-susceptible TB receive anti-TB treatment for at least six months while patients with MDR-TB and RR-TB receive longer treatments comprising of second-line drug regimens (NTP 2015). The sputum smear microscopy is used as an initial screening test for TB diagnosis, while GeneXpert assays are employed for the rapid detection of RR-TB at the district level (NTP 2015). In the current study, we analyzed the prevalence of MDR-TB among different lineages prevalent in the Khyber Pakhtunkhwa (KPK) province of Pakistan. MDR-TB is notified after a confirmatory DST test performed at the central BSL-III laboratory.

Experimental

Material and Methods

Study site. Random samples were collected from 25 districts of KPK using a simple random sampling (SRS) formula, which was previously used in a national TB survey of Pakistan:

\[
N \times z^2 \times \frac{p \times (1-p)}{d^2 \times (N-1) + z^2 \times p \times (1-p)}
\]

where

- SRS = Sample Random Sampling
- \(N\) = total number of new smear positive cases registered in the lab
- \(z\) = \(z\)-value (from the standard normal distribution) that corresponds to the desired confidence level
- \(d\) = absolute precision
- \(p\) = expected proportion of MDR patient in the target population

Study participants and sample collection. A total of 1969 culture-positive isolates were processed for both phenotypic DST and molecular resistance assay. DST was performed using a BD BACTEC MGIT 960 SIRE kit (Ref: 245123, Becton, Dickinson), in which the final drug concentration was 1 \(\mu g/ml\) for RIF, and 0.1 \(\mu g/ml\) for INH. One sample aliquot was processed for acid-fast bacilli (AFB) microscopy using Primostar-LED fluorescent microscopy.

Data analysis. Results were recorded in the local laboratory management information software and analyzed using SPSS V.15 (IBM, USA). Sensitivity and specificity were calculated using Medcalc software (https://www.medcalc.org).

Results

Among 5759 TB suspects, 1969 (34%) were culture-positive, 3121 (54%) were culture-negative, and 344 (6%) were contaminated. The proportion of TB was higher in females (39%) than males (29%), thus, a strong association was observed between the gender and tuberculosis disease (\(\chi^2 (3) = 68.2, p = 0.001\)). It was observed that the age group of 25–34 years was more likely infected with TB (40%) when compared to other groups (Table I). The susceptibility testing towards the first-line drugs as rifampicin, isoniazid, ethambutol, streptomycin, and pyrazinamide was performed on 1969 culture-positive isolates.

DST results of 1969 isolates showed that 238 (12%) isolates were resistant to at least one drug, while 97 (4.9%) were confirmed to be MDR-TB. The remaining 1731 (88%) isolates were sensitive to all drugs. The drug resistance was the highest to streptomycin in 173 (9%) isolates, followed by isoniazid in 119 (6%), ethambutol in 101 (5%), rifampicin in 99 (5%), and pyrazinamide in 65 (3%) isolates.

The drug resistance found was correlated with different factors from the patient history including age, gender, and treatment history. MDR was observed in 61 (5.2%) males and 36 (4.5%) in female patients. No significant association of MDR with gender (\(\chi^2 (1) = 1, p-value = 0.26\)) or age group (\(\chi^2 (5.8) = 6, p-value = 0.44\)) was observed. The prevalence of MDR was higher in the age group of 55–64 years (6.4%), followed by a group of 15–24 years (6%) (Table II). MDR correlation with pulmonary and extra-pulmonary TB was also analyzed and it was found that the prevalence of MDR in pulmonary...
Prevalence of MDRTB in Khyber Pakhtunkhwa Pakistan

TB was significantly higher 94 (5.3%) when compared to extra-pulmonary TB (1.5%), \(\chi(5.3) = 1 \), \(p-value = 0.009 \). The resistance of the MTB isolates from the previously treated patients was significantly higher in 48 (10.4%) cases when compared to 49 (3.2%) untreated patients. It can indicate an association of drug resistance with the patient treatment history (\(\chi(16) = 2 \), \(p-value = 0.001 \)).

Discussion

MDR-TB is a major threat to public health. Monitoring its trends over time is crucial to prevent further emergence of drug resistance. Surveillance of drug resistance is, therefore, a critical component of any TB control Programme (Zignol et al. 2016). A decade back, only 18 422 laboratory-confirmed MDR-TB cases were reported from 104 countries. It escalated to an estimated 490 000 cases in 2016 (WHO 2019). Even today MDR-TB is a persistent threat to the global community but unfortunately, only 47% of MDR cases could be diagnosed among the global estimates due to limited resources and laboratory gaps. Similarly, among all the registered MDR-TB cases, only 54% could be successfully treated. This study provides preliminary data of MDR-TB in KPK, which contributes to 13% of the national TB burden. In this first large-scale data, we found that MDR-TB was detected among 4.9% of

<table>
<thead>
<tr>
<th>Character</th>
<th>TB Suspects</th>
<th>Positive cases</th>
<th>(p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>(\chi(3) = 68.2, p = 0.005)</td>
</tr>
<tr>
<td>Male</td>
<td>3189</td>
<td>947 (29%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>2570</td>
<td>1022 (39%)</td>
<td></td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01–14</td>
<td>437</td>
<td>96 (22%)</td>
<td></td>
</tr>
<tr>
<td>15–24</td>
<td>1137</td>
<td>396 (34%)</td>
<td></td>
</tr>
<tr>
<td>25–34</td>
<td>1180</td>
<td>473 (40%)</td>
<td></td>
</tr>
<tr>
<td>35–44</td>
<td>827</td>
<td>298 (26%)</td>
<td></td>
</tr>
<tr>
<td>45–54</td>
<td>732</td>
<td>227 (31%)</td>
<td></td>
</tr>
<tr>
<td>55–64</td>
<td>819</td>
<td>282 (34.4%)</td>
<td></td>
</tr>
<tr>
<td>65–100</td>
<td>627</td>
<td>197 (31.4%)</td>
<td></td>
</tr>
<tr>
<td>Treatment history</td>
<td></td>
<td></td>
<td>(\chi(3) = 68, p-value = 0.05)</td>
</tr>
<tr>
<td>Previously Treated</td>
<td>1024</td>
<td>461 (45%)</td>
<td></td>
</tr>
<tr>
<td>Never Treated</td>
<td>3922</td>
<td>1508 (38%)</td>
<td></td>
</tr>
<tr>
<td>Disease type</td>
<td></td>
<td></td>
<td>(\chi(3) = 68, p-value < 0.05)</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>5290</td>
<td>1864 (35%)</td>
<td></td>
</tr>
<tr>
<td>Extra Pulmonary</td>
<td>469</td>
<td>105 (22%)</td>
<td></td>
</tr>
<tr>
<td>Sample type</td>
<td></td>
<td></td>
<td>(\chi(36) = 259.6, p-value \leq 0.05)</td>
</tr>
<tr>
<td>Ascetic Fluid</td>
<td>91</td>
<td>10 (11%)</td>
<td></td>
</tr>
<tr>
<td>BAL*</td>
<td>172</td>
<td>45 (26%)</td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>20</td>
<td>2 (10%)</td>
<td></td>
</tr>
<tr>
<td>CSF**</td>
<td>44</td>
<td>2 (5%)</td>
<td></td>
</tr>
<tr>
<td>Gastric Lavage</td>
<td>68</td>
<td>5 (7%)</td>
<td></td>
</tr>
<tr>
<td>Lymph Node</td>
<td>10</td>
<td>3 (30%)</td>
<td></td>
</tr>
<tr>
<td>Pericardial fluid</td>
<td>26</td>
<td>3 (12%)</td>
<td></td>
</tr>
<tr>
<td>Pleural Fluid</td>
<td>172</td>
<td>26 (15%)</td>
<td></td>
</tr>
<tr>
<td>Pus</td>
<td>54</td>
<td>9 (17%)</td>
<td></td>
</tr>
<tr>
<td>Sputum</td>
<td>5033</td>
<td>1858 (37%)</td>
<td></td>
</tr>
<tr>
<td>Synovial Fluid</td>
<td>3</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Tissue</td>
<td>20</td>
<td>5 (25%)</td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td>46</td>
<td>1 (2%)</td>
<td></td>
</tr>
</tbody>
</table>

* Bronchoscopy alveolar lavages, ** Cerebrospinal fluid
newly diagnosed patients. This figure is consistent with the first national DRS of Pakistan where it has been reported 3.7% MDR-TB cases (Tahseen et al. 2016) and 3.6% the global estimates (WHO 2019). Similar findings from Pakistan reported a 2–5% MDR-TB ratio (Javaid et al. 2008; Ejaz et al. 2010). A comparative high ratio of 29% and 9% MDR-TB was reported in early literature from other areas of Pakistan (Javaid et al. 2016; Shah et al. 2016). However, Akhtar et al. demonstrated a much higher MDR ratio of 69% in a study performed in Punjab (Akhtar et al. 2016). Possible differences in these reports might be due to the variance in study design and sample inclusion criteria. People ages 15 to 34 years old were at high risk to develop MDR-TB (Hoa et al. 2015; Akhtar et al. 2016; Khan et al. 2018). The increased drug resistance in previously treated cases (10.4%) was high as compared to newly diagnosed patients. These findings are consistent with previously published data (Tahseen et al. 2016). TB has been found to be more prevalent in males (Neyrolles and Quintana-Murci 2009); however, we did not detect a significant correlation of MDR-TB with gender, extra-pulmonary TB or a sample type (Bhattacherjee and Datta 2014; Wattal et al. 2015). In contrast to this, data from Africa shows a relatively high prevalence of drug-resistant TB in women (O’Donnell et al. 2011).

In conclusion, MDR-TB is an emerging problem in Khyber Pakhtunkhwa, Pakistan. This study has highlighted the MDR surveillance among the population of a geographically distinct area of Pakistan. Knowing the approximate magnitude of MDR-TB, this study will help for better management of drug resistance towards global TB control 2030.

ORCID

Anwar Sheed Khan https://orcid.org/0000-0003-0339-2487

Acknowledgements

We are thankful for the technical support of the Project Director, Dr. Qasim Abbas for his technical support in this study.

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

https://doi.org/10.4103/0974-777X.132066

https://doi.org/10.1016/j.trstmh.2010.03.005
PCR-based Screening Approach: A Rapid Method to Detect the Biosynthetic Potential of Antimicrobials in Actinobacterial Strains

NAILA NOUREEN, MOHSIN TASSAWAR CHEEMA, SUMAIRA ANWAR, SHAHIDA HASNAIN and IMRAN SAJID*

Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore, Pakistan

Submitted 29 November 2019, revised 19 March 2020, accepted 29 March 2020

Abstract

This study aimed to investigate the PCR-based screening strategy for the prediction of the antimicrobial biosynthetic potential of the selected Streptomyces strains originated from an extreme environment (Cholistan Desert, Pakistan). The biosynthetic potential was determined by using both molecular and culture-dependent screening approaches. The four biosynthetic gene clusters, including the \textit{pks-1}, \textit{nrps}, cyp P450 hydroxylase (\textit{cyp}s), and glycopeptide \textit{oxy} \textit{b} genes, were investigated in the selected strains by PCR amplification, sequencing, and by subsequent bioinformatics approaches. Among the 40 selected \textit{Streptomyces} strains, 33 strains possessed the \textit{nrps} gene, 17 strains carried the \textit{pks-1} gene, four strains were found to have the \textit{cyp}s gene, and none of the strain carried \textit{oxy} \textit{b} gene. The \textit{Streptomyces} strains including NR-1, NR-10, NR-14, and NR-15 were investigated for \textit{in vitro} antifungal activity against \textit{Fusarium oxysporum}, \textit{Rhizoctonia solani}, and \textit{Aspergillus} sp. The extracts were analyzed for chemical profiling (TLC and HPLC-UV), and a unique pattern of secondary metabolites was observed. The selected strains exhibited pronounced antifungal activity against the fungal test strains with the zone of inhibition up to 17, 18, and 19 mm, respectively. The study depicts that gene-based screening can be successfully applied to identify potentially bioactive strains by using a single screening process. This PCR-based approach is rapid and can be used for sorting out and selecting the potential candidate among actinobacterial culture collections. Such a preselection or strain prioritization consequently decreases the time and efforts required for selecting the potential bioactive strain, which then can be subjected to the detailed chemical analysis.

Keywords: gene-based screening, polyene specific cytochrome P450 hydroxylase (CYP), \textit{nrps}, \textit{pks-1}, \textit{Streptomyces}

Introduction

The gene-based screening allows the rapid detection of biosynthetic gene clusters in the isolated strains (Wood et al. 2007). In the latest years, genome mining has become a novel and rapid method to identify the previously unidentified gene clusters (Xu et al. 2019). Genes that are involved in the biosynthesis of secondary metabolites are mainly organized in the secondary metabolism biosynthetic gene clusters. With the progress of genomic sequencing technology, the mining of the organism’s secondary metabolism biosynthetic gene clusters becomes possible (Bu et al. 2019; Xu et al. 2019). \textit{Streptomyces} harbor over 20 secondary gene clusters encoding the biosynthesis of many cryptic metabolites that are not expressed under standard laboratory conditions. The genome of \textit{Streptomyces} is genetically engineered to remove the non-essential genes and permit heterologous expression of genes encoding cryptic metabolites (Komatsu et al. 2010; Wu et al. 2017; Bu et al. 2019; Xu et al. 2019). In most of the cases, these gene clusters are silent or ordinarily expressed under the specified laboratory conditions (Ye et al. 2017). One of the essential features of the genome in the genus \textit{Streptomyces} is the occurrence of biosynthetic gene cassettes (Hwang et al. 2014). The \textit{Streptomyces coelicolor} and \textit{Streptomyces avermitilis} contain more than 20 gene clusters for the production of secondary metabolites and innovative antibiotics (Busti et al. 2006). In the genome of

Abbreviations

\begin{tabular}{ll}
CYP & – cytochrome P450 hydroxylase \\
NRPS & – non-ribosomal peptide synthase \\
PKS-1 & – polyketide synthase
\end{tabular}
S. avermitilis there are 25 types of gene clusters for secondary metabolites. From the 25 genes clusters, eight are for type I polyketide, two for type II related polyketide, and eight gene clusters are involved in the biosynthesis of non-ribosomal peptide synthetases (NRPS) compounds (Omura et al. 2001).

The conventional method of natural drug discovery is based on the bioactivity-guided purification of compounds, which is laborious and led to re-discovery of compounds most often. However, most of the biosynthetic potential of microorganisms is not detected under laboratory conditions (Winter et al. 2011).

The biosynthetic gene clusters for polyenes showed the existence of cytochrome P450 hydroxylase. The cytochrome P450 hydroxylase (cyp) genes performed different types of oxidation processes in different organisms (Lamb et al. 2003). The polype-specific cytochrome P450 hydroxylase (cyp) has been found in all the earlier categorized polyene gene clusters, such as for nystatin, amphotericin, pimaricin, and candicidin antibiotics (Lee et al. 2006). Glycopeptides are a significant class of antibiotics that inhibit bacterial cell wall synthesis (Sosio et al. 2003). Glycopeptide antibiotics biosynthesis gene cluster of balhimycin encodes the cytochrome P450 monooxygenases such as Oxyb, Oxyb, and Oxyb that are responsible for three oxidation steps and convert the linear peptide into cyclized form to make them chemically active. Thus, these three oxygenases act in a stepwise manner in the order Oxyb, then Oxyb, and Oxyb for the formation of glycopeptide antibiotics (Bischoff et al. 2001).

The genomic studies of actinomycetes indicated that non-ribosomal peptide synthetases and type I polyketide synthases (PKS-1) contribute about half of the biosynthetic systems that encode the genes for the biosynthesis of the secondary metabolites (Komaki et al. 2016). The PKS type I catalyzes the synthesis of macrolide antibiotics including erythromycin and tylosin (Le et al. 2014). The pks-1 gene codes for at least three domains equivalent to a ketosynthase (KS), acyltransferase (AT), and an acyl carrier protein (ACP) that enable the condensation of different subunits. All the PKS I domains collaborate to form a new polyketide chain (Ayuso-Sacido and Geniloud 2005). The non-ribosomal peptide includes clinically essential antibiotics, such as cyclopentols, bleomycin, vancomycin, and penicillins. A representative NRPS unit consists of three essential domains, such as an adenylation (A) domain, a penicillid carrier protein (PCP), and a condensation (C) domain. New domains are continually evolving, as novel gene clusters for peptide biosynthesis are being categorized (Du et al. 2000).

The PCR-based screening approach sets the stage for the discovery of novel metabolites. This method helped to meet the medical severe demand for new drug candidates and enhance the acceptance of natural metabolic products as suitable drug candidates.

In this study, a PCR-based genome screening method was used for 40 independently isolated Streptomyces strains, and the detection of CYP specific polyene (cytochrome P450 hydroxylase), the glycopeptide oxyb gene (cytochrome P450 monooxygenase), type I polyketide synthase (PKS-1), and the non-ribosomal peptide synthase (NRPS) gene, based on the presence of the expected size of the PCR amplified DNA fragments, was performed. These results suggest that the PCR-based genome screening method is an efficient method for the detection of potentially valuable Streptomyces. The bioinformatics studies were also applied to confirm the presence of glycopeptide Oxyb, NRPS, and PKS-1 proteins, which play an important role in the antibiotics biosynthesis pathways. The functional analysis of the sequenced strains was performed by using different bioinformatics tools including BLASTn, BLASTp, EMBOSS TRANs, and MEGA 6.0. The biological and chemical analyses were performed to confirm that the selected Streptomyces strains can produce the antifungal compounds (cyps genes) under the culture condition.

Experimental

Materials and Methods

Streptomyces strains and genomic DNA extraction. A total of 40 Streptomyces strains were obtained from the collection of the Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan. The selected strains were previously isolated from Cholistan desert of Pakistan. The GYM broth (glucose 10 g, yeast extract 5 g, malt extract 5 g, distilled water 1,000 ml) was prepared, and 40 ml broth was taken in a 100 ml flask and was inoculated with the fresh culture of Streptomyces strains in each case. The flasks were incubated at 28°C on a rotatory shaker for about 7 days. The culture broth was taken in the Eppendorf tube and centrifuged at 10,000 rpm for 2 minutes to get the cell pellet or mycelial mass. The cell pellet was further utilized for DNA extraction by using the tissue Genomic DNA Extraction Mini Kit (FavorPrep™).

PCR amplification of antibiotics biosynthesis genes. The PCR was performed (Primus 96 (PeqLab) thermal cycler). All amplifications contained a total volume of 50 µl with 0.5 × Master Mix (25 µl) (Thermo Scientific), 10 pmol of each primer (3 µl) (1 st BASE laboratories), 100 ng of DNA template (3 µl) and 19 µl of deionized water. The gradient PCR was performed to identify the optimum annealing temperatures for each pair of primers. The PCR based screening of the non-ribosomal peptide synthase, polyketide synthase...
Gene based screening

Sequence of the amplified PCR product. The PCR products were purified by using MicroElute gel extraction kit (Favorgen) and sequenced by dye terminator chemistry using an automated sequencer, using the commercial facility of 1st BASE laboratories. The sequences were analyzed using the BLASTn search program at The National Center for Biotechnology Information (NCBI): http://www.ncbi.nlm.nih.gov/BLAST/. The BLASTn was performed to estimate the percentage homology with the reported gene clusters, and the sequences were submitted to NCBI, GenBank, to get the accession numbers.

Sequence analysis by bioinformatics tools. The sequences were analyzed by using various bioinformatics tools, such as the nucleotide sequence was translated by using EMBOSS transeq (https://www.ebi.ac.uk/Tools/st/emboss_transeq/) into their resulted peptides sequence. The BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) of all the resultant translated frames was performed, to find the similarity index of the peptides based on the percentage similarity, the functional protein with the highest similarity, was selected from all the 6 reading frame. The translated sequence of Streptomyces proteins were selected for multiple sequence alignment by using the Clustal_W alignment tool built-in MEGA 6 (https://www.megasoftware.net/). The partial 16S rRNA sequences of the selected actinobacterial strains were compared using the BLAST tool available on NCBI. The sequences of closely related species were obtained from NCBI and aligned using the CLUSTAL_W program. The neighbor-joining phylogenetic tree was inferred using a Kimura’s 2-parameters in software MEGA 6.0. Tree topologies were evaluated for branch support using 1,000 replications Fig. 1.

Preparation of cell extracts for biological and chemical screening. The cell extracts of actinomycetes were prepared by inoculating the actinomycetes cultures, in the 200 ml GYM-broth, the inoculated flasks were incubated for 6–7 days at 28°C on the rotatory shaker. The cultures were sonicated for 27, 86, and 87 s.

Table I

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primers</th>
<th>Sequence (5’-3’)</th>
<th>Length</th>
<th>Tm</th>
<th>Product size</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyp</td>
<td>CYP-F</td>
<td>TGGATCGCGGCCAGACGGCAGCTGCYCT</td>
<td>23 bp</td>
<td>63.8</td>
<td>350 bp</td>
<td>Ayuso-Sacido and Genilloud 2005</td>
</tr>
<tr>
<td></td>
<td>CYP-R</td>
<td>CCGWASAGSAYSCGCTGCCTGT</td>
<td>23 bp</td>
<td>56.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxy b</td>
<td>GLY-F</td>
<td>CTGTTGCGGACAACCTGATGGAC</td>
<td>21 bp</td>
<td>61.7</td>
<td>560 bp</td>
<td>Ayuso-Sacido and Genilloud 2005</td>
</tr>
<tr>
<td></td>
<td>GLY-R</td>
<td>CAGGTACGCAGTACAGCTGCCTGT</td>
<td>21 bp</td>
<td>61.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pks1</td>
<td>K1F</td>
<td>TASAAGCTCAACATCGGBCA</td>
<td>19 bp</td>
<td>48.4</td>
<td>1200–1500 bp</td>
<td>Ayuso-Sacido and Genilloud 2005</td>
</tr>
<tr>
<td></td>
<td>M6R</td>
<td>CGCAGGTSSCGTACCAGTA</td>
<td>20 bp</td>
<td>55.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nrps</td>
<td>A3F</td>
<td>GCSTACSYSTTACSTACSTCGG</td>
<td>23 bp</td>
<td>53.1</td>
<td>700 bp</td>
<td>Wood et al. 2007</td>
</tr>
<tr>
<td></td>
<td>A7R</td>
<td>SASGTCVCSCGTCGGTAS</td>
<td>19 bp</td>
<td>50.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Neighbor-joining tree based on 16S rRNA gene sequences of closely related type strains. Evolutionary distance was calculated using Kimura’s 2-parameters with 1000 bootstrap value.
bath to break the cells, an equal volume of ethyl acetate was added, and the mixture was taken in a separating funnel and was vigorously shaken for 5–10 minutes. The separating funnel was kept un-disturbed; after some time, two distinctive layers appeared. The aqueous layer was separated from the organic layer carefully. The ethyl acetate was recycled on a rotary evaporator, and the extracts were obtained in methanol, and stored in clean vials at 4°C. These methanolic extracts were further used for in vitro antifungal activity and for chemical profiling, using TLC and HPLC/UV (Fatima et al. 2019).

Determination of the antifungal activity. The PDA (potato dextrose agar) plates were prepared, and the inverted side of the plate was marked from edge to about 2 cm from both sides. After marking, agar plugs were cut from well-grown cultures of selected actinomycetes, and were placed on PDA plates about 2 cm from the edge, and the plates were incubated for about 2 days. After 2 days of incubation, similarly, agar plugs were cut from the fungal cultures, and were placed on the opposite side of the same plate that contained the actinomycetes agar plug. The plates were incubated for further 4 to 5 days at 27°C. After that the incubation zone of inhibition was measured.

In another method, the fungal test strains, including *F. oxysporum* (FO), *R. solani* (RS), and *Aspergillus* sp. (FN2) were streaked on SDA (Sabourad dextrose agar). The fresh cultures of fungal strains were swabbed with 60 μl of methanolic extracts were loaded on each well, and the plates were incubated for about 2 days. After 2 days of incubation, similarly, agar plugs were cut from the fungal cultures, and were placed on the opposite side of the same plate that contained the actinomycetes agar plug. The plates were incubated for further 4 to 5 days at 27°C. After that the incubation zone of inhibition was measured.

Thin-layer chromatography (TLC). The methanolic extracts were spotted on the TLC plate with the help of a sterile cork borer in the help of a capillary tube. The spots were air-dried, before developing the plate with CH2Cl2/MeOH (10%) solvent and visualized under UV at 254 nm and 366 nm. The TLC plates were stained, by spraying with anisaldehyde/H2SO4, and Ehrlich’s reagents, (Merck) individually.

High-performance liquid chromatography (HPLC-UV) analysis. The methanolic extracts of actinomycetes were analyzed, on the HPLC (Sykum HPLC system) by using the software clarity. The column used was Rp C18 with a 30 cm length. The Mobile phase was methanol and water (95:5), and the flow rate was adjusted to 1 ml/minute. The methanolic extracts were dissolved in HPLC grade methanol, and 20 μl of each extract were injected and were run for 20 minutes, the UV absorbance was measured at 254 nm. The peaks of each component were measured and were compared at different retention times (tR) with standard UV absorption data of secondary metabolites.

Results

About 40 selected *Streptomyces* strains were screened for the presence of cytochrome P450 hydroxylase (*cyp*) gene. Out of 40 strains (Table II), only four showed the presence of the *cyp* P450 hydroxylase gene, with the

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Given Code of Strain</th>
<th>GenBank Accession No.</th>
<th>Identified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR-1</td>
<td>MK243471</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>NR-10</td>
<td>MK243472</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>NR14</td>
<td>MK243473</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>NR15</td>
<td>MK243474</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>MN912435</td>
<td>Streptomyces pseudovenezuelae</td>
<td></td>
</tr>
<tr>
<td>D6-3</td>
<td>MN912436</td>
<td>Streptomyces flavogriseus</td>
<td></td>
</tr>
<tr>
<td>H34A</td>
<td>MN912437</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>MN912443</td>
<td>Streptomyces fenghuangensis</td>
<td></td>
</tr>
<tr>
<td>H32B</td>
<td>MN912444</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>B5K</td>
<td>MN912445</td>
<td>Streptomyces fimbriatus</td>
<td></td>
</tr>
<tr>
<td>H31A</td>
<td>MN912446</td>
<td>Nocardiodes sp.</td>
<td></td>
</tr>
<tr>
<td>M19</td>
<td>MN912447</td>
<td>Streptomyces albogriseolus</td>
<td></td>
</tr>
<tr>
<td>MM5</td>
<td>MN912448</td>
<td>Streptomyces Streptomyces griseus</td>
<td></td>
</tr>
<tr>
<td>NR-3</td>
<td>MN912449</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>M63</td>
<td>MN912450</td>
<td>Streptomyces misionensis</td>
<td></td>
</tr>
<tr>
<td>M32</td>
<td>MN912451</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td>MN912452</td>
<td>Streptomyces steffisburgensis</td>
<td></td>
</tr>
<tr>
<td>MM7</td>
<td>MN912453</td>
<td>Streptomyces fimbriatus</td>
<td></td>
</tr>
<tr>
<td>M13</td>
<td>MN912454</td>
<td>Streptomyces niveoniger</td>
<td></td>
</tr>
<tr>
<td>D3-1</td>
<td>MN912455</td>
<td>Streptomyces bambusae</td>
<td></td>
</tr>
<tr>
<td>M29</td>
<td>MN912456</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>M28</td>
<td>MN912457</td>
<td>Streptomyces coeureascens</td>
<td></td>
</tr>
<tr>
<td>NR-24</td>
<td>MN912458</td>
<td>Streptomyces silaceus</td>
<td></td>
</tr>
<tr>
<td>NR-22</td>
<td>MN912459</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>MN912460</td>
<td>Streptomyces steffisburgensis</td>
<td></td>
</tr>
<tr>
<td>M43</td>
<td>MN912461</td>
<td>Streptomyces rubrolavendulae</td>
<td></td>
</tr>
<tr>
<td>NR-12</td>
<td>MN912462</td>
<td>Streptomyces neopeptinius</td>
<td></td>
</tr>
<tr>
<td>NR-6</td>
<td>MN912463</td>
<td>Streptomyces coeruleoprunus</td>
<td></td>
</tr>
<tr>
<td>D3-3</td>
<td>MN912464</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>D3-2</td>
<td>MN912465</td>
<td>Streptomyces sp.</td>
<td></td>
</tr>
<tr>
<td>M93</td>
<td>KM062032</td>
<td>Streptomyces lauritii</td>
<td></td>
</tr>
<tr>
<td>M71</td>
<td>KM062033</td>
<td>Streptomyces vitaminophilus</td>
<td></td>
</tr>
<tr>
<td>M54</td>
<td>KM062034</td>
<td>Streptomyces hypolidicus</td>
<td></td>
</tr>
<tr>
<td>M51</td>
<td>KM062035</td>
<td>Streptomyces chartreusis</td>
<td></td>
</tr>
</tbody>
</table>
The sequences were submitted to NCBI GenBank (BANKit) as follows: strain NR-1 Accession No. MF279145, strain NR-10 Accession No. MF279146, strain NR-6 Accession No. MF279147, strain M13 Accession No. MF279148, strain NR-12 Accession No. MF279150, strain NR-6 Accession No. MF27914, strain NR-14 Accession No. MK272790, and strain NR-15 Accession No. MK272791 (Table II). The 16S rRNA gene accession numbers are given as follows: NR-1 Accession No. MK243371, NR-10 Accession No. MK243372, NR-14 Accession No. MK243373, and NR-15 Accession No. MK243374.

The nucleic acid sequence of strains NR-1, NR-10, NR-14, and NR-15 with the cytochrome P450 hydroxylase gene was translated using EMBOSS Transq. The similarity index of the translated nucleotide of strain NR-1, with cytochrome P450 hydroxylase protein from all six reading frames, were mentioned in Table IV. The EMBOSs_001_1 showed the highest percentage similarity of 98% with cytochrome P450 hydroxylase (CYP) protein, while the EMBOSs_001_4 indicated the lowest similarity with cytochrome P450 hydroxylase (CYP) protein. The EMBOSs_001_5 and EMBOSs_001_6 are non-functional proteins, and no significant similarity was found. The protein sequence that showed highest similarity index were further selected for alignment by using the MEGA 6.0. It might be possible the given antifungal activity of the Streptomyces strains, including NR-1, NR-10, NR-14, and NR-15, was due to the different amino acid residues within the protein sequence. The bioinformatic studies confirmed the presence of cytochrome P450 hydroxylase), cytochrome P450 monoxygenase, non-ribosomal peptide synthase, and type I polyketide synthase proteins that plays a vital role in the antibiotics biosynthesis pathways. The biological and chemical screening results showed that the selected Streptomyces strains NR-1, NR-10, NR-14, and NR-15 can produce the polypeptide compounds under laboratory conditions.

The results of the agar plug method indicated that all the four strains carrying the cyp gene showed an

Table III

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Isolates</th>
<th>Nucleotide length</th>
<th>GenBank Accession No.</th>
<th>% gene homology</th>
<th>Genes encoding for</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NR-1</td>
<td>350 bp</td>
<td>98</td>
<td>CYP</td>
<td>MF279145</td>
</tr>
<tr>
<td>2</td>
<td>NR-10</td>
<td>350 bp</td>
<td>100</td>
<td>CYP</td>
<td>MF279146</td>
</tr>
<tr>
<td>3</td>
<td>NR14</td>
<td>350 bp</td>
<td>98</td>
<td>CYP</td>
<td>MF279147</td>
</tr>
<tr>
<td>4</td>
<td>NR15</td>
<td>350 bp</td>
<td>98</td>
<td>CYP</td>
<td>MF279148</td>
</tr>
<tr>
<td>5</td>
<td>NR-16</td>
<td>700 bp</td>
<td>100</td>
<td>NRPS</td>
<td>MF279150</td>
</tr>
<tr>
<td>6</td>
<td>M13</td>
<td>700 bp</td>
<td>99</td>
<td>NRPS</td>
<td>MF279148</td>
</tr>
<tr>
<td>7</td>
<td>NR-12</td>
<td>700 bp</td>
<td>98</td>
<td>NRPS</td>
<td>MF279148</td>
</tr>
<tr>
<td>8</td>
<td>NR-6</td>
<td>1500 bp</td>
<td>98</td>
<td>PKS-1</td>
<td>MF279149</td>
</tr>
</tbody>
</table>

The translated DNA sequence of NR-1 based on six reading frames and their percentage similarity with cytochrome P450 hydroxylase (CYP) protein.

<table>
<thead>
<tr>
<th>Sequence translation (EMBOSS Transq)</th>
<th>% similarity with cytochrome P450 hydroxylase protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBOSs_001_1</td>
<td>98</td>
</tr>
<tr>
<td>EMBOSs_001_2</td>
<td>50</td>
</tr>
<tr>
<td>EMBOSs_001_3</td>
<td>No significant similarity found</td>
</tr>
<tr>
<td>EMBOSs_001_4</td>
<td>45</td>
</tr>
<tr>
<td>EMBOSs_001_5</td>
<td>No significant similarity found</td>
</tr>
<tr>
<td>EMBOSs_001_6</td>
<td>No significant similarity found</td>
</tr>
</tbody>
</table>

The PCR amplified gene fragments were sequenced, and sequence data was analyzed with the BLAST to check the percentage homology of the given genes such as the cytochrome P450 hydroxylase (cyps), glycopeptide oxy b, pks-1, and non-ribosomal peptide synthase (nrps) genes with the other genes that are present in NCBI GenBank. The percentage homology of the amplified gene fragments in different Streptomyces strains with the cytochrome P450 hydroxylase (cyps) gene was as follows: NR-1, NR-10, and NR14 (98%, 100%, and 100%). The percentage homology of the amplified genes in Streptomyces strains with non-ribosomal peptide synthase (nrps) gene are given as: NR-6, M13, M29, and NR-12 (100%, 99%, 100%, and 98%). The percentage homologies of Streptomyces strains with type I polyketide synthase (pks-1) were 98% for the strain NR-6 (Table III).
inhibitory effect toward the tested fungal strains (Table V). The strain NR1 showed the most remarkable inhibitory effect on the tested fungal strains. The strains NR-1 and NR-14 have the most prominent inhibitory effect on the test strain FN2 (Fig. 2). While in the well-diffusion method cycloheximide (2 mg/ml) was used as standard, and the MM7 methanolic crude extract was used as the negative control. The crude extracts of strains NR-1, NR-10, NR-14, NR-15, and MM7 showed 17.0 ± 0.11 mm, 17.8 ± 0.18 mm, 14.7 ± 0.22 mm, 16.0 ± 0.25 mm, 5.1 ± 0.12 mm zone of inhibition, while CHX (cycloheximide) showed 9.9 ± 0.26 mm inhibitory zone against the *Fusarium oxysporum* (FO). The selected crude extract showed the following zones of inhibition against the *Rhizoctonia solani* (RS): 18.0 ± 0.32 mm, 12.2 ± 0.41 mm, 13.8 ± 0.45 mm, and 16.6 ± 0.45 mm. The fungal strain *Aspergillus* (FN2) against which the antifungal activity was determined by

<table>
<thead>
<tr>
<th>The fungus strain tested</th>
<th>Zone of inhibition in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NR-1</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>17.0 ± 0.11</td>
</tr>
<tr>
<td>Rhizoctonia solani</td>
<td>18.0 ± 0.32</td>
</tr>
<tr>
<td>Aspergillus sp.</td>
<td>22.1 ± 0.40</td>
</tr>
</tbody>
</table>

Fig. 2. Antifungal activity of the selected polyene producing *Streptomyces* sp. against different fungal strains tested (*Fusarium oxysporum* (FO), *Rhizoctonia solani* (RS), and *Aspergillus* sp. (FN2)). (A), (B), (C) Antifungal activity of NR-1, NR-10, and NR-15 by the agar plug method against *Fusarium oxysporum* (FO), *Rhizoctonia solani* (RS). (D), (E), (F) Activity of NR-1, NR-14, and NR-15 by the agar plug method against *Aspergillus* sp. (FN2). (G), (H), (I) Activity of NR-1, NR-14, NR-10, H26, and CHX (cycloheximide) by the well diffusion method against *Aspergillus* sp.
utilizing the crude extracts of NR-1, NR-10, NR-14, and NR-15 strains. The strain NR-1 showed the most prominent zone of inhibition which was 22.1 ± 0.40 mm, while NR-10, NR14, and NR-15 indicated 19.0 ± 0.12 mm, 18.8 ± 0.27 mm, and 18.3 ± 0.38 mm zone of inhibition, respectively. The MM7 (control) did not show any significant zone of inhibition compared to the tested Streptomyces extracts (Table V).

In a thin-layer chromatography, different biologically active components were analyzed in the crude extracts. The Streptomyces strains indicated various bands, which were of unique color. Many components of the crude extract displayed UV absorbance; however, most noticeable bands were observed in crude extracts of strains NR-14 and NR-1 (Fig. 3). NR-14 and NR-1 showed red, pink, and the most important green color band after spraying with anisaldehyde/H$_2$SO$_4$. The NR-10, NR15, NR 14, and NR-1 exhibited bands of yellowish, pink, and purple after staining with Ehrlich’s reagent.

The biologically active strains, including NR-1, NR10, NR14, and NR-15 that showed the presence of polyene specific the cytochrome P450 hydroxylase (cyps) gene, were further analyzed on HPLC to indicate either these strains had peaks related to any polyene compounds when grown in culture. The strain NR-1 showed three peaks at different retention times; the most prominent peak was observed at t_R 2.95 minutes. The strain NR-10 showed two peaks, but the most prominent peak was detected at t_R 3.22 minutes. The other strains, which were analyzed on the HPLC chromatogram, included NR-14, which displayed two prominent bands at 2.94 minutes and 3.20 minutes retention time (t_R). The strain NR-15 showed the most prominent peak at t_R 3.02 minutes (Fig. 4).

Each of the HPLC/UV chromatogram of methanolic extract of selected Streptomyces were compared with the standard nystatin HPLC/UV chromatogram (Hwang et al. 2007). The standard nystatin displayed the peak at a retention time of 3.03 minutes. After that comparison, it was confirmed that all the strains that showed the presence of polyene specific CYP P450, produced some polyene like antifungal metabolites.

Discussion

The current advances in the field of genomics, metagenomics, and high-throughput screening is beneficial for the natural product’s detection (Genilloud et al. 2011). Due to the rediscovery of the already known metabolites, there is a strong need to explore the unique habitats and ecological niches, so that the probability of the discovery of novel metabolites with appropriate bioactivities could increase (Dhanesha et al. 2017). The genome mining has thus delivered a comprehensive innovative tool, for the discovery of already identified, as well as previously unidentified natural metabolites, and the explanation of new biochemical revolutions and biosynthetic pathways (Chou et al. 2010).

Among the 40 tested Streptomyces strains only four strains indicated the presence of a predictable 350 bp PCR product for the polyene specific cytochrome P450 hydroxylase gene. The results indicated that polyene gene is a rare gene because only a low hit rate was found.
The use of fungal antibiotics is limited because of its high toxicity, so the genome-guided screening approach for the detection of new polyene antibiotics like compounds having improved pharmacological ability and less cytotoxicity is welcomed (Brautaset et al. 2002).

To screen the selected Streptomyces strains for the detection of the glycopeptide oxy b gene a PCR was performed. After optimization, not a single strain could be found positive for the desired gene; it might be because the glycopeptide gene cluster is rare. Encheva-Malinova et al. (2014) reported that almost all the strains possessed pks-II gene, and among the 11 strains screened for the nrps gene, six were positive for polyene, and four were positive for glycopeptide gene. The study confirmed that the glycopeptide antibiotics gene is rare among all four genes screened. In this study, for 33 strains amplification of the 700 bp fragment was successful that indicated the presence of the non-ribosomal peptide synthase gene. Gontang et al. (2010) reported that three primer sets for different domains of the nrps gene utilized for PCR based screening. The results of study showed that all domains were amplified in the isolated Streptomyces, and the biosynthetic domains were involved in the production of secondary metabolites. For the pks-1 gene, the annealing temperature utilized in gradient PCR was 55 ± 0.5°C for 2 minutes. The most appropriate PCR product of 1200–1500 bp was visualized at temperature 53°C.

The in vitro antifungal assays indicated that the selected Streptomyces have the potential to synthesize the polyene specific CYPs proteins when grown in culture conditions. The published literature also indicated that most of the secondary metabolites from Streptomyces are extracellular when grown under certain cultural conditions (Arasu et al. 2013).

Overall, this study revealed that a PCR-based screening approach that targets novel genes from biosynthetic gene clusters is a powerful tool for the rapid detection and identification of bioactive strains within the large culture collections. Moreover, in the recent past, the screening of large culture collections has led to the rediscovery of already known compounds; this greatly increases the usefulness of the PCR-based screening approach. Furthermore, in this study, a phylogenetic analysis of the amplified PCR products showed the exact prediction of the structural class of secondary metabolites being synthesized by an individual strain. The gene-based screening approach is helpful and can act as an additional pre-screening strategy for the selection of promising Streptomyces strains in a collection before cultivating the strains on a large scale for the purification and identification of the compounds. The relative abundance of the selected genes is shown in Fig. 5.

Fig. 4. HPLC analysis of crude extracts of the polyene producing Streptomyces sp. (A) HPLC chromatogram of strain NR-1, (B) HPLC chromatogram of strain NR-10, (C) HPLC chromatogram of strain NR-14, (D) HPLC chromatogram of strain NR-15.

Fig. 5. The relative abundance of the nrps, pks-1, cyps, oxy b genes in the selected Streptomyces strains.
Acknowledgments

The financial support for this work by the Higher Education Commission of Pakistan (HEC) through the HEC-NRPU Project No. 2121 is gratefully acknowledged. The results reported in this manuscript belong to the Master's thesis of the author Naila Noureen.

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

Noureen N. et al.

Introduction

Strong-aroma Baijiu is a unique liquor that is clear and transparent and comprises of water, ethanol, and flavor compounds. The flavor compounds include acids, alcohols, esters, carbonyl, and phenolic compounds, etc. (Liu and Sun 2018; Wu et al. 2019; Zhao et al. 2019). Although the content of flavor compounds is less than 2%, it determines the consumers’ acceptance and preference of Baijiu (Zhao et al. 2018). Microorganisms produce most flavor compounds during fermentation. Strong-aroma Baijiu has a unique production process and fermentation vessels (Fig. 1). The fermentation vessel is called a mud pit (Li et al. 2017; Liu and Sun 2018). The mud pit is a similar cuboid pond (Ding et al. 2015), just below the horizon and surrounded by special mud that is called a fermentation pit mud (FPM). The fresh FPM is produced via a complicated process using natural yellow soil that contains the abundance of iron oxide and aluminum oxide, Daqu, the fermented exudate that is called Huangshui, and Baijiu (Sun et al. 2017; Liu et al. 2019). During the fermentation process, the FPM interacts with Huangshui and fermentation grain (Li et al. 2017). The fermentation grain was called Zaopei, and it is composed of sorghum, rice husks, and Daqu. The FPM gradually matures when the fermentation process is carried out round after round. The content of flavor substances in the produced liquor is gradually increasing until it becomes relatively stable (Tao et al. 2014; Zheng et al. 2015; Wang et al. 2017). In general
the quality of Baijiu is improved when the fermentation pit (FP) age is more than five years (Zhao et al. 2012), and becomes relatively stable when the FP age is about 30 years (Tao et al. 2014). During strong-aroma Baijiu brewing, multiple of microorganisms co-exist in the FP. The FPM contained plentiful of microbes that can produce the flavoring compounds (Deng et al. 2012; Zhao et al. 2012; Liu et al. 2014; Luo et al. 2014). Therefore, the quality of Baijiu partly depends on the microbes from the FPM (Tao et al. 2014; Li et al. 2017; Xu et al. 2017). In general, the PFM in the aged PF contains more microbes that can produce the flavoring compounds. (Hu et al. 2016; Liu et al. 2017; Zhang et al. 2017). In China, the people regard the aged FP as a living artifact, and it can apply for urban or national cultural heritage to protect when the FP age is more than 30 or 100 years. The most famous is Luzhou Laojiu national cultural heritage FP group, especially the 1573 FP group that began construction in 1573 AD (Liu et al. 2017). The aged FP can produce high-quality Baijiu (Ding et al. 2014; Tao et al. 2014; Yao et al. 2015; Xu et al. 2017). However, the key factors to produce high-quality Baijiu are microorganisms that are more conducive to the yielding of the flavor compound in the FPM (Ding et al. 2014; Hu et al. 2015; Liu et al. 2017; Chai et al. 2019). Therefore, analysis of the microbial community in the FPM of different ages is intentional and may detect the significant functional microorganisms.

With the techniques of molecular biology and the detection methods developed, the unveiling of microbial communities in environmental samples become quite an easy task. The composition of microbial communities in samples such as soils (Torsvik and Øvreås 2002), ocean water (DeLong 2009), hot springs (Chapelle et al. 2002), gut (Chapelle et al. 2002), and FPM (Tao et al. 2014; Li et al. 2017; Chai et al. 2019) has been reported in succession. High-throughput sequencing technology is one of the most used techniques for analyzing of microbial communities. It could be used widely in the studies of Baijiu, such as analysis of the microbial communities of fermentation starters (Wang et al. 2017) or fermented grains (Chai et al. 2019), FPM (Tao et al. 2017). The determination of the content of phospholipid fatty acid (PLFA) is one of the most popular techniques for analyzing of total biomass in a sample (Green and Scow 2000; Zheng et al. 2013; Ding et al. 2015). Therefore, pyrosequencing and PLFAs were employed to assess the structure of prokaryotic communities within the FPM and to reveal the changes within these communities with age during the FPM maturation. In addition, the relationship between environmental factor variables and prokaryotic community structure and diversity in the FPM was revealed. It would be promising to find out the functional microorganisms that produced the flavor compounds of strong-aroma Baijiu.

Experimental

Materials and Methods

Materials. UltraClean Soil DNA Isolation Kit was purchased from MOBIIO (USA). QIAQuick Gel Extraction Kit was purchased from QIAGEN (USA).
Obtained from the renowned strong-aroma Baijiu microbiotag sequencing platform.

Pairs specific for the V2-V3 and V6-V8 regions of FP was amplified, respectively, using the two-primer isolates from the same pit. The DNA mixture from each DNA sequencing was carried out at the Roche GS Junior sequencing platform.

Samples collection. The FPM samples were obtained from the renowned strong-aroma Baijiu producer from Luzhou, Sichuan province, China. Samples of the FP that had been utilized for 5, 30, and 100 years were sampled in triplicate, with five FP samples being collected in each FP when a round of fermentation process is just over. The sampling points were located at the bottom of the FP in the midpoint of the four sides and the intersection of the diagonal (Fig. 1). Each sample (20 g) was frozen at −20°C and shipped to the Sichuan University of Science and Engineering, Yibin, China on dry ice for analysis of the microbiome.

Chemical analysis. A gravimetric approach was used to measure the FPM moisture, with soil being collected and immediately dried at 60°C for 48 h. A method previously detailed by Mehlich was used for the humic acid measurements (Mehlich 1984), while the Kjeldahl method was used to quantify total nitrogen content (Tao et al. 2014). The levels of NH₄⁺ in samples were measured via a sodium salicylate approach (Tao et al. 2014). Ammonium fluoride and hydrochloric acid were used to extract phosphorus (Sun et al. 2017), which was measured by SpectraMax 190 Microplate Reader (Molecular Devices, USA). Total acidity was measured via 0.1 M NaOH titration, as previously described (Wherry 1920; Zhang et al. 2012). Primary organic acids (the levels of caproic, acetic, butyric, and lactic acids) were measured with an ion chromatograph (Metrohm 761 Compact IC, Switzerland) that had a conductivity detector as well as an ion exclusion graph (Metrohm 761 Compact IC, Switzerland) that was then analyzed. The SILVA web-based tools (http://www.arb-silva.de) were used for representative OTU sequence taxonomic classification (Quast et al. 2012).

Pyrosequencing and data analysis. The amplified sequences of the 16s rRNA gene prepared as above were then sequenced with a Roche 454 FLX Titanium sequencing platform. The QIIME pipeline was then used to process the raw read sequences, as in previous studies (Wang J et al. 2017). Briefly, those sequences that were either < 200 bp or > 600 bp long were excluded from analyses, after which all high-quality sequences underwent operational taxonomic unit (OTU) clustering via USEARCH (v7.0.1090) (Edgar 2013), with a 97% similarity threshold. The sequences representatives for each OTU were obtained. An OTU was only considered valid if a minimum of five reads in the present study were associated with it. The UCHIME (v4.2.40) algorithm (Edgar et al. 2011) was used for chimera filtration. The optimized sequences were used for OTU alignment, and OTU abundance in each sample was then analyzed. The SILVA web-based tools (http://www.arb-silva.de) were used for representative OTU sequence taxonomic classification (Quast et al. 2012).

PLFA extraction and analysis. The FPM samples were freeze-dried and ground using a ball mill to a particle size of fewer than 10 μm prior to analysis. A modified version of a three-step protocol was then used for PLFA extraction (Bligh and Dyer 1959). Briefly, methanol, chloroform, and water were used to extract lipids from the soil, after which a silicic acid column was used to separate out phospholipids, neutral lipids, and glycolipids. A gas chromatograph (Agilent 6890) equipped with a 19091B-102 column (25.0 m × 200 μm × 0.33 μm, Agilent Technology, USA) and a flame ionization detector (FID) was then used for the alkaline methanolysis of phospholipids. GC settings for this analysis were: a 250°C inlet temperature, a 10:1 split ratio, and a 1 ml/minute flow of hydrogen...
as a carrier gas. The oven was warmed for 2 minutes at 140°C, and the temperature was then raised by 5°C per minute up to a final 250°C temperature where it was maintained for 5 minutes. Peak areas were then compared to those of an internal C19:0 reference standard (Fluka, Switzerland) in order to quantify PLFAs. Fatty acids that had a <0.5% overall relative abundance were omitted from this data set. Besides, PLFA nomenclature was designated according to a previous report (Moore and Dick 2008). The abundance of certain microbial groups was assessed by using specific PLFAs as biomarkers (O’Leary 1988; Frostegård and Bååth 1996; Moore-Kucera and Dick 2008; Li et al. 2017) (Table I), whereas PLFA 16:0 is present within all species of bacteria, plants, and fungi, and was therefore not considered to be a group-specific PLFA (Ding et al. 2015).

Data analysis. All data were means ± standard deviation from triplicate analyses, and were compared via ANOVAs. P < 0.05 was the significance threshold. SPSS 17.0 was used for all statistical analyses. The redundancy analysis (RDA) and microbial community analysis were performed using a program of RStudio (v1.0.136).

Results and Discussion

Chemical properties of the FPM. The physicochemical properties of the FPM are shown in Table II. The moisture increased in the FPM with age, and it may imply that there were differences in the microbial metabolic activity. The samples containing higher moisture might represent higher microbial metabolic activity. The available phosphorus can be an indirect indicator of biomass; it increased from 5 to 30 years and then stabilized. This pattern could also represent changes in biomass. There was no significant difference in total acidity; however, the content of caproic acid increased, and the content of lactic acid significantly declined with the FP age (p < 0.05). Caproic acid is produced by microbial fermentation. The high caproic acid content indicated that the FPM contained more numerous microorganisms producing caproic acid. Lactic acid mainly comes from Huangshui, and it was produced during fermentation, and its content was similar in FP of different ages. The content of lactic acid in the FPM was variable, indicating that there was a different abundance of microorganisms that could use lactic acid.

Table II

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values for fermentation pit age (yr)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Moisture(%)</td>
<td>35.15 ± 6.42</td>
</tr>
<tr>
<td>Humic matter (%)</td>
<td>10.54 ± 1.59</td>
</tr>
<tr>
<td>Total acidity(%)</td>
<td>1.54 ± 0.09</td>
</tr>
<tr>
<td>Acetic acid(mg/g)</td>
<td>3.98 ± 0.36</td>
</tr>
<tr>
<td>Lactic acid(mg/g)</td>
<td>94.22 ± 1.30</td>
</tr>
<tr>
<td>Butyric acid(mg/g)</td>
<td>2.87 ± 0.34</td>
</tr>
<tr>
<td>Caproic acid(mg/g)</td>
<td>15.15 ± 5.12</td>
</tr>
<tr>
<td>Total nitrogen(%)</td>
<td>0.94 ± 0.09</td>
</tr>
<tr>
<td>NH₄⁺(mg/g)</td>
<td>14.12 ± 1.77</td>
</tr>
<tr>
<td>Available phosphorus(mg/g)</td>
<td>4.91 ± 0.52</td>
</tr>
<tr>
<td>Available calcium(mg/g)</td>
<td>9.51 ± 1.02</td>
</tr>
</tbody>
</table>

*All data are presented as means ± standard deviations (n = 3)
The content of NH$_4^+$ increased in the FPM with age; it may imply that old FPM might contain more microorganisms metabolizing amino acids to produce NH$_4^+$. Total nitrogen increase could be understood as an accumulation process that included a dynamic balance of nitrification and nitrogen loss. The available calcium decrease could be considered as a gradual loss process when compared to Huangshui.

The prokaryotic community structure and diversity. Each of the FP samples generates two amplicon libraries by amplification of V2-V3 and V6-V8 regions. Eighteen amplicon libraries were sequenced using the Roche 454 Junior platform, yielding 2.2 Gb of data, of which 34% passed Q30. After quality control, denoising, and chimera removal, we obtained 211,740 reads, with an average 377.4 bp read length. A total of 1,089 OTUs (952 OTUs belong to bacteria, 137 OTUs belong to archaea) were obtained based on a 3% dissimilarity in the sequences of the 16S rRNA gene, considering those OTUs with ≥5 sequences to be valid ones. Rarefaction analyses revealed a good representation of all prokaryotic communities within these samples, as all the curves approached a saturation plateau (Fig. 2).

Compared with archaea, the bacteria occupy an absolute advantage on OTUs. As the age of the FPM increases, the diversity of microorganisms decreases.
Phylogenetic composition of the FPM community.

The significant differences were observed in sequencing results using different variable regions (V2-V3, V6-V8) of the 16S rRNA gene (Table IV). The results showed that most of the reads (about 90.2%) belonged to archaea when sequencing was performed with the V2-V3. However, most of the reads (about 93.8%) belonged to bacteria when sequencing was performed within the V6-V8. These results indicate that the variable regions have a preference for some types of microorganisms. The variable region V2-V3 is more suitable than V6-V8 for analyzing community of archaea, and V6-V8 is more suitable than V2-V3 for analyzing community of bacteria in the FPM samples. Thus, different primers may lead to different results. Therefore, the choice of suitable primers based on the characteristics of the microbial structure is essential to obtain the objective results. There are abundant microbial species in the FPM, including bacteria and archaea. What kind of primers is most suitable for the particular environment samples? This issue requires further research.

There were 952 OTUs that belonged to bacteria, of which 95.9% were relative of low abundance (<1%), and 21.8% (208) OTUs were present in all samples. 137 OTUs belonged to archaea, of which 93.4% were relative of low abundance (<1%), and 20.4% (28) OTUs were present in all samples. These results showed that although there were many types of microorganisms, there were also the dominant microorganisms in the FPM. These dominant microorganisms may be functional microorganisms of the FPM.

Most bacteria belonged to five phyla Firmicutes Bacteroidetes, Chloroflexi, Actinobacteria, and Synergistetes. The two most dominant phyla of bacteria were Firmicutes (75.8%), and Bacteroidetes (5.6%) (Fig. 3). Only Euryarchaeota was observed within archaea in all FPM samples (data not show).
At the genus level, most bacteria belonged to 29 genera (Fig. 4A), 11 of them are core genera. The core genera were those present within all samples and had a relative abundance of more than 1.0%. The core genera belonged to *Firmicutes* (*Lactobacillus*, *Ruminococcaceae*, *Bacillus*, *Syntrophomonas*, *Clostridium*, *Carnobacterium*, and *Sporanaerobacter*), *Bacteroidetes* (*Petrimonas* and *Proteiniphilum*), *Actinobacteria* (*Cellulomonadaceae*) and *Chloroflexi* (*Anaerolineaceae*). Most archaea belonged to seven genera (Fig. 4B); six of them were core genera: *Methanobacterium*, *Thermoplasmatales*, *Methanoculleus*, *Methanosata*, *Methanobrevibacter*, and *Methanocorpusculum*. These core genera constituted 53–77% of total abundance.

Microbial community structure changes with the FP age. *Firmicutes* were the dominant phyla; its relative abundance increased with the FP age. It is worth noting that all the seven core genera of *Firmicutes* increased in number with the FP age. This result showed that Firmicutes could adapt to the special environment of the FP. This adaptation may benefit from their special stress-resistant structure, such as thick cell walls. It may also advantage from their diverse metabolic patterns. *Actinobacteria* relative abundance increases with the FP age. The core genus of *Acinetobacter*, *Cellulomonadaceae*, may be involved in cellulose metabolism (Stackebrandt and Schumann 2015). Although there was cellulose in the FP, the harmful environmental factors such as acidity and lack of oxygen may be the reasons for hindering its rapid increase. *Synergistetes* did not contain core genera, but its relative abundance had increased significantly. It also contained only one genus, *Aminobacterium*, which might be involved in amino acid metabolism (Baena et al. 2015). The abundant amino acids in the environment provided favorable conditions for the increase of its relative abundance. *Bacteroidetes* includes two core genera, *Proteiniphilum* and *Petrimonas*; their relative abundance decreases with the FP age. *Proteiniphilum* might be involved in protein metabolism (Whitman et al. 2015b), *Petrimonas* could metabolize glucose through fermentation (Whitman et al. 2015a), and the reason for their reduction needs further study. *Chloroflexi* contained a core genus, its relative abundance decreased with the FP age. The core genus, *Anaerolineaceae*, might be involved in carbohydrate and protein metabolism (Yamada and Sekiguchi 2020), the product included hydrogen. The high partial hydrogen pressure in the FP might be the reason for its reduction. The relative abundance of the other four phyla decreased with age. All speculations about metabolism mentioned above were based on the Bergey’s Manual of Systematics of Archaea and Bacteria.

Regarding archaea, the relative abundance of two core genera *Methanobacterium* and *Methanocorpusculum* increased with the FP age, and the other four core genera, *Methanoculleus*, *Methanobrevibacter*, *Methanosata*, and *Thermoplasmatales*, decreased with the FP age. *Methanobacterium* and *Thermoplasmatales* had the highest relative abundance. However, their trends of change were in the opposite. This change might be the result of competition among microbial genera.
Thermoplasmatales might be inferior in the competition because it lacks a true cell wall (Langworthy 2015).

Quantitative Analysis of Specific Microbial Groups Based on PLFAs Detection. Microbial biomass was assessed based on PLFAs concentrations in the FPM. A total of 30 PLFAs were identified (Fig. 5). The results show that the concentrations of most PLFAs in the FPM were different in the samples of different ages. It indicates that there was a difference in the microbial community structure in the FPM of different ages. This result is a validation of the sequencing results and once again shows that the community structure changes with FP age.

The concentrations of total PLFAs increased with the pit age (Fig. 6). This result suggested that the total biomass increased with age. However, microbial diversity decreased with age (Table III). These results suggested that the number of specific microbial species had increased. The changes in the contents of microbes, such as Gram-positive bacteria, anaerobes, and actinomyc-
Microbial Diversity and Community Analysis in FPM 159
cetes were similar to the changes of total PLFA (Fig. 6). The probable reason that the biomass of Gram-positive bacteria increased with the FP age is that these groups of microorganisms have thick cell walls and strong resistance to stress. This result is consistent with changes in the structure of the microbial community. There are 11 core bacterial genera, six of them belong to Gram-positive, and five of them belong to Gram-negative (Ezaki 2015; Hammes and Hertel 2015a; Hammes and Hertel 2015b; Hernandez-Eugenio et al. 2015; Logan and Vos 2015; Rainey et al. 2015; Sekiguchi 2015; Stackebrandt and Schumann 2015; Whitman 2015a; Whitman 2015b; Yamada and Sekiguchi 2020). The relative abundance of the seven core bacterial genera increased with the FP age, there were five genera belonging to Gram-positive and two genera belonging to Gram-negative. The relative abundance of four core bacterial genera decreases with age; there were three genera of Gram-negative and one genus of Gram-positive. Environmental screening may be responsible for the relative abundance of the

Fig. 5. Concentration of phospholipid fatty acids (PLFAs) in different FPM samples. The concentration of each sample was determined by an internal standard (19:0). Error bars indicate standard deviations (n = 3).

Fig. 6. Concentrations of phospholipid fatty acids (PLFA) in different samples at the microbial groups level. Error bars show standard deviations (n = 3).
anaerobic group. During long-term fermentation, in the FP, an anaerobic environment occurs. The reason that the relative abundance of actinomycetes increases with the FP age needs further stud, and the relative abundance of core genus, Cellulomonadaceae, increased in with the FP age, and it might be a key factor.

Relationships between prokaryotic communities and environmental variables. Redundancy analysis (RDA) was performed to discern the possible relationship between prokaryotic community structure and environmental parameters (Fig. 7). The two axes with respect to bacteria community differentiation explained 86.7% of the variation, while these two axes explained 96% of the archaeal variation, suggesting the remarkable correlation between prokaryotic community structure and environmental factors. Lactic acid levels mainly correlated positively with prokaryotic communities in the 5-year samples. However, caproic acid and NH$_4^+$ levels mainly correlated with those in the 30- and 100-year samples. Humic acid and TN levels mainly correlated with those in the 30- and 100-year samples, respectively.

The content of lactic acid correlated positively with Lactobacillus, and negatively correlated with Clostridium, Ruminococcaceae, and Syntrophomonas. These results suggested that lactic acid might be produced by Lactobacillus, and Clostridium. Ruminococcaceae and

Fig. 7. Prokaryotic community redundancy analysis (RDA) based upon Roche 454 pyrosequencing and chemical properties. The dominant community structure-related genera and the direction/magnitude of chemical properties are represented by arrows. It includes the genera of bacteria (A) and genera of archaea (B).
Syntrophomonas may be involved in the process of lactic acid consumption. The content of caproic acid correlated positively with Clostridium, Ruminococcaceae, Syntrophomonas, Methanobacterium, and Methanothermocorpusculum abundance, and negatively correlated with Lactobacillus and Thermoplasmatales levels. Clostridium is a classic microorganism that produces caproic acid using ethanol (Rainey et al. 2015). Ruminococcaceae can produce caproic acid from lactic acid, such as Ruminococcus CPB6 (Yin et al. 2016). Syntrophomonas can use carboxylic acid to produce acetic acid and hydrogen. Syntrophomonas dependence on caproic acid may be the reason for its positive correlation with caproic acid content. A high partial pressure of hydrogen accompanied the production of caproic acid. This condition is also beneficial to Methanobacterium (Boone 2015), and Methanothermocorpusculum (Chong and Boone 2015). The symbiotic interactions between them need further study. The content of humic acid correlated positively with Cellulomonadaceae. Humus produced via the degradation of lignin and cellulose, and its content in the 30-year samples was significantly higher than those in the 5-year and 100-year (Table II). It is worth noting that the trend of changes in the number of Cellulomonadaceae is similar to that of humus level. Cellulomonadaceae may be involved in cellulose metabolism (Stackebrandt and Schumann 2015). The content of TN and NH\textsubscript{4}+ affected the relative abundance of various microbial genera; they involved amino acid metabolism, nitrification, and denitrification. In addition, the nitrogen source, as the main nutrient element for microbial growth and development is closely related to the microbial community.

The FPM provides a large number of microorganisms for the fermentation of strong-aroma Baijiu. It involved protein and amino acid, carbohydrate, lignin and cellulose metabolism, as well as hydrogen, acid and methane production, etc. The most relevant to the quality of strong-aroma Baijiu is the production of caproic acid. Clostridium and Ruminococcaceae are microbes that directly produce caproic acid. Increasing their relative abundance in the FPM could improve the quality of strong-aroma Baijiu. In addition, the simplest way to increase the relative abundance of these two genera of microorganisms is to inoculate them in large quantities into the FPM. Nevertheless, this may not necessarily be an effective method. Although inoculation with microorganisms can temporarily increase relative abundance, there is a risk of decline. The strict monitoring of ecological factors makes the evolution of microorganisms beneficial to these two groups; thus, forming the dominant populations can provide better results. What ecological factors do they need? This issue needs further study. Syntrophomonas, Methanobacterium, and Methanothermocorpusculum may also be beneficial to caproic acid production. These genera are not directly involved, but provide possible environmental factors for caproic acid production.

Conclusions

These results offer insight into microbial community structural diversity within the FPM used for producing strong-aroma Baijiu as determined via Roche 454 pyrosequencing and PLFA. Our results demonstrate that the variable regions have a preference for the specific groups of microorganisms in the FPM, and sequencing with the appropriate variable region can make the results more objective. The complex functional populations of microorganisms inhabit the FPM ecosystem, and the microbial community structure in the FPM changes with the FP age. The total prokaryotic biomass in the FPM increased with the FP age; however, Shannon’s diversity index decreased significantly ($p < 0.01$). These results suggested that a unique microbial community structure evolved with uninterrupted use of the FP. The results of RDA correlations indicate that Clostridium and Ruminococcaceae are genera that directly produce caproic acid. Increasing their relative abundance in the FPM could improve the quality of strong-aroma Baijiu. The control of ecological factors makes the community succession of microorganisms beneficial to these two groups, which could promote the quality of strong-aroma Baijiu. However, the way of control of these ecological factors requires further research.

Acknowledgment

This work was supported by the Key R&D projects of Sichuan Province Science and Technology Department (2016SZ0074), Open Foundation of Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province (NJ2016-05 and NJ2018-04), Open Foundation of China Light Industry Key Laboratory of Strong-aroma Baijiu Solid State Fermentation (2018J007).

Authors’ contributions

Jie Deng conceived and designed the experiments; Xu-Jia Wang performed the experiments; Hong-Mei Zhu analyzed the data; Zhi-Qiang Ren completed the manuscript; Zhi-Guo Huang and Chun-Hui Wei gave important suggestions.

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

https://doi.org/10.1002/9781118960608.gbm01253

https://doi.org/10.1139/e59-099

https://doi.org/10.1002/9781118960608.gbm00495

https://doi.org/10.3389/fmicb.2019.01397

https://doi.org/10.1002/9781118960608.gbm00504

DeLong EF. The microbial ocean from genomes to biomes. Nature. 2006 Apr;442(7103):36–43. https://doi.org/10.1038/nature04931

https://doi.org/10.1002/9781118960608.gbm00678

https://doi.org/10.1002/9781118960608.gbm00604

https://doi.org/10.1002/9781118960608.gbm00524

Liu MK, Tang YM, Zhao K, Liu Y, Guo XJ, Ren DQ, Yao WC, Tian XH, Gu YF, Yi B, Zhang XP. Determination of the fungal community of pit mud in fermentation cellars for Chinese strong-

Ovreås L, Forney I, Daae FI, Torsvik V. Distribution of bacterio-plankton in meromictic Lake Sælvenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1997 Sep;63(9):3367.

Wu ZY, He F, Qin D, Li HH, Sun JY, Sun XT, Sun BG. Determination of phenolic compounds in alcoholic fermentation materials and spent grains by ultrasound-assisted alkali alcohol extraction coupled with HPLC. Anal Methods. 2019 Sep 27;11(42): 5366–5375. https://doi.org/10.1039/C9AY01739A

Yao F, Yi B, Shen CH, Tao F, Liu YM, Lin ZX, Xu P. Chemical analysis of the Chinese liquor Luzhoulaojiao by comprehensive

Comparison of Rapid and Routine Methods of Identification and Antibiotic Susceptibility Testing of Microorganisms from Blood Culture Bottles

SADIK AKGUN and HAKAN SEZGIN SAYINER

1 Adiyaman University, Faculty of Medicine, Department of Medical Microbiology, Adiyaman, Turkey
2 Adiyaman University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Adiyaman, Turkey

Submitted 13 February 2020, revised 15 March 2020, accepted 29 March 2020

Abstract

Reporting of the results of routine laboratory blood culture tests to clinicians is vital to the patients' early treatment. This study aimed to perform identification and antibiotic susceptibility tests of the blood cultures showing positive signals of microbial growth in the first 12 hours of incubation by using centrifugation and Gram staining of 5 ml of liquid from the vial, thus achieving faster results. This study included 152 consecutively incubated blood culture samples showing positive microbial growth signals in the first 12 hours. The samples were centrifuged and then categorized into two groups (Gram-positive and Gram-negative) using Gram staining. Identification and antibiotic susceptibility tests were performed using an automated culture antibiogram device. For routine processing, media inoculated with positive blood culture were kept in the incubator for at least 24 hours. To compare the two methods in terms of the bacteria identification, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of the growing colony was studied. By Gram staining, the same bacterial strains were obtained for 138 (92%) of the 152 samples, similar to the results of the procedures mentioned earlier. With the samples tested with both methods, the antibiotic susceptibility profiles were compared using the antibiogram results for 1,984 samples that underwent the antibiotic testing. A 97.4% (for 1,934 antibiotic susceptibility assays) agreement was observed between the two methods. Comparing the results of the post-centrifugation Gram staining to those obtained for the specimens using routine procedures, the clinicians reported a high success rate (approximately 97%).

Key words: blood culture, Gram staining, antibiotic susceptibility test, rapid reporting, MALDI-TOF MS

Introduction

Bloodstream infections, especially in intensive care units, are among the most important causes of morbidity and mortality despite the antimicrobial treatment. The early diagnosis and treatment of these infections is clinically vital (Durmaz et al. 2003; Ferreira et al. 2011). For the proper identification and antibiotic susceptibility testing, the bacteria grown in blood culture bottles are sent to laboratories; the detection of bloodstream infections under the appropriate growth conditions, at the appropriate periods, and using the appropriate conventional methods constitute a significant portion of microbiological testing. The recently developed automated systems have been shown to be suitable for bacterial culture, and upon detection of a growth signal, clinicians can remove the bottles from the device and inoculate the sample into media. These media generally include resins or coal particles that absorb antimicrobial agents or other substances that inhibit bacterial growth and may be present in the patient’s blood sample (Morrell et al. 2005; Kirn et al. 2014; Nataraj et al. 2016; Jacobs et al. 2017). Early and correct treatment of patients is essential for reducing morbidity and mortality.

For this reason, rapid identification of microorganisms and antibiotic susceptibility testing is crucial. Due to Gram staining of microorganisms in blood cultures, their identification and antibiotic sensitivity results are obtained early, clinicians are informed quickly, and the patient is given the opportunity to start early antibiotic treatment. Continuous monitoring of automated blood
culture systems allows a positive blood culture to be detected within 6 to 24 hours of incubation (Morrell et al. 2005; Behera et al. 2010; Ferreira et al. 2011; Kirn et al. 2014; Nataraj et al. 2016).

In recent years, advances in the methods involving polymerase chain reaction and DNA sequencing have changed the nature of clinical microbiology laboratories. However, the lack of diagnostic tests that are fast, reliable, easy to use, and inexpensive, as well as applicable for use as diagnostic checkpoints is a significant limitation (Tuite et al. 2014; Yis 2015; Caliendo and Hodinka 2017). Although several molecular or proteomic methods (e.g., Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry [MALDI-TOF MS]) exist that can be used to direct evaluation of specimens or colonies, the gold-standard methods with the highest sensitivity and safety still remain blood culture-based methods (Mamishi et al. 2005; Behera et al. 2010; Tuite et al. 2014; Yis 2015; Nataraj et al. 2016; Caliendo and Hodinka 2017; Jacobs et al. 2017).

This study aimed to use a different, faster-than-usual method, which involves centrifugation at 12 hours of bacterial culture to allow clinicians to rapidly (in less than 12 hours) complete the antibiotic susceptibility testing. It may be due to more accurate information about the Gram-staining characteristics of growing microorganisms via a positive signal of microbial growth in the incubator.

Experimental

Materials and Methods

Clinical samples. The study included 152 bottles of blood culture (aerobic, pediatric blood culture vials, BD, USA), which gave positive signals in the first 12 hours in the incubator (Bactec FX, BD, USA) out of 2,455 blood culture samples sent from different clinics of our hospital to the Medical Microbiology Laboratory between August 2018 and July 2019. Of these 152 blood culture bottles, 102 were sent from intensive care units, 31 from internal sciences clinics, and 19 from surgical clinics. Of these, 130 belonged to adult patients (≥18 years old), and 22 belonged to pediatric patients (<18 years old).

The rapid method. Centrifugation. Five ml of the inoculating fluid was taken from the positive blood culture vials, and, unlike in the routine procedure, the centrifugation was conducted in a standard blood collection tube (BD Vacutainer 5.0 ml, BD, USA) at 2,000 rpm for 10 minutes. After centrifugation, the blood components (erythrocytes, etc.) were placed under a gel, and the bacteria in the serum adhered to the gel to provide a gelatinous coating that formed a film layer. Then, the supernatant liquid remaining on the gel in the collection tube was slowly discharged. A small number of the bacteria collected in the form of a layer on the gel in the collection tube was removed with a cotton swab and spread on a sterile microscope slide for Gram staining.

Gram staining. After the serum fraction was removed, a few bacteria were taken from the bacterial film layer just above the gel. Then, a small volume of this layer was spread and air-dried on a slide. The air-dried preparations were subjected to Gram staining (Becerra et al. 2016) using a Gram-staining set (Moslab, Ankara, Turkey). For this, crystal violet was poured onto the slide, left for 2 minutes, and washed with water. Then, the Lugol solution was poured, left for 2 minutes, washed with water, then decolorized with alcohol and washed with water. Finally, diluted fuchsin was poured onto the slide, and after 30 seconds, the preparation was washed with water and allowed to air-dry. The preparations were then examined with a microscope with a 100× objective. Based on the results of the study, the strains were defined as Gram-positive or Gram-negative (Figs. 1–4).

Identification and antibiotic susceptibility testing using the rapid method. After Gram staining, the strains of Gram-positive and Gram-negative bacteria or yeast were picked from the gel with a cotton-tipped extruder. Bacteria of a concentration equivalent to a McFarland standard of 0.5–0.63 (for yeasts, 1.8–2.2) were diluted with the manufacturer's identification solution (ID broth, BD, USA). Then, 0.5 μl of the dilution was transferred to the antibiotic susceptibility test solution (AST broth, BD, USA), and identification and antibiotic susceptibility tests were conducted using an automated identification and susceptibility testing system (Phoenix 100, BD, USA) and the appropriate kits (GP ID/AST, GN ID/AST or YEAST ID, BD, USA). The tests run for an average of 8–12 hours, depending on the type of microorganism. The results were reported quickly within 24 hours by the clinician involved.

The routine procedures. For comparison, the microorganisms from bottled blood samples were also cultured on sheep blood agar (SBA), eosin methylene blue (EMB) agar, and some other media without centrifugation and routinely incubated at 37°C for 18–24 hours. The next day, when sufficient growth was observed, routine Gram-staining and antibiotic susceptibility testing were performed. With the help of a sterile loop, a small volume of the colonies grown on the medium was taken and mixed in the identification broth (ID broth, BD, USA). Then, 0.5 μl of the dilution was transferred to the solution for antibiotic susceptibility testing (AST broth, BD, USA). Both solutions were transferred to the appropriate kits. Identification and antibiotic susceptibility tests were conducted using the automated identification and susceptibility testing system (Phoenix 100, BD, USA), and the appropriate
kits (GP ID/AST or GN ID/AST, BD, USA). The tests were run for an average of 8–12 hours, depending on the type of microorganism. The results were reported quickly, within 24 hours, by the clinician involved.

MALDI-TOF MS Analysis. The samples were collected with the aid of a sterile loop from colonies of microorganisms grown on the appropriate medium using a routine method, and each bacterial or yeast isolate was transferred to a separate well on a distinct plate in the MALDI-TOF system. One microliter of 70% formic acid (FA) (FA extraction solution, Bruker Daltonik GmbH, Germany) was added to the plate, and after drying at room temperature, 1 µl of α-cyano-4-hydroxycinnamic acid matrix solution (HCCA) (IVD Matrix HCCA, Bruker Daltonik GmbH, Germany) was again dried at room temperature (20–25°C). The dried plates were placed in the instrument (MSP 96 target polished steel, Bruker Daltonik GmbH, Germany) and loaded onto the MALDI-TOF MS (Bruker, Germany) for analysis. At the end of the analysis, the reported microorganisms were recorded using a particular software system (IVD MALDI Biotyper, Bruker Daltonik GmbH, Germany) (Schulthess et al. 2014). For the scoring used in the identification, values were in the range from 0 to 3. Microorganisms with a score ≥ 2 were evaluated as correctly identified at the genus and
species level. A score of 1.7–2 given to organisms indicated a correct identification at the genus level. Organisms with a score of <1.7 were identified as those that required testing again.

Data analysis. In terms of identification, in the Phoenix 100 Expert System’s interpretation, organisms with a reliability >90 were accepted as being correctly identified. Those with a value of <90 were considered incorrectly identified. In terms of susceptibility, the minimum inhibitory concentration (MIC) values of the bacteria against the antimicrobials evaluated by both the rapid and routine method were translated into clinical categories (susceptible [S], intermediate [I], or resistant [R]) according to the Phoenix 100 Expert System’s interpretive criteria.

For comparison of the results of both methods, the Clinical and Laboratory Standards Institute (CLSI) M52 Verification of Commercial Microbial Identification and Antimicrobial Susceptibility Testing System (Campigotto et al. 2018) was used. According to this methodology, the identification results were divided into three categories: not identified, misidentified (organism was incorrectly identified at the genus or species level [discrepancy]), and full consistency (accurate identification at the same genus and species level by both methods). For the antibiotic susceptibility results, the discrepancies were classified as minor errors (mEs: susceptible/resistant versus intermediate susceptibility), major errors (MEs: false resistant, considered as resistant susceptibility by one method but susceptible by the other method), and very major errors (VMEs: false susceptibility).

Statistical analysis. The statistical analyses were performed using software (SPSS 15.0, IBM, USA). The results of the continuous data analyses were given as minimum, maximum, median, and mean values, and the results of some categorical variables were given as frequencies and percentages.

Results

A positive signal, which was a bacterial growth marker, was recorded for 152 bottles of blood culture included in the study. They were sent from 102 (67.1%) intensive care units (84 internal intensive care, nine coronary intensive care, and nine pediatric intensive care), 31 (20.4%) from internal clinics (15 internal medicine clinics, ten oncology/hematology clinics, and six pediatric clinics), and 19 (12.5%) from surgical clinics (10 general surgery clinics, seven pediatric surgery clinics, and two gynecology clinics). Of the 152 samples, 130 (85.5%) came from adult patients and 22 (14.5%) from pediatric patients. Of the patients, 82 (54%) were female, 70 (46%) were male, and the youngest patient was one year old, while the oldest was 89 years old (their mean age was 57.5). Because of the lack of blood-based elements in the bacterial layer and the presence of a more significant number of microorganisms than usual, the images of the microorganisms obtained by microscopic examination following Gram staining after centrifugation were more satisfactory in terms of their quality and quantity than those obtained following Gram staining without centrifugation.

According to the results obtained, of the 152 samples included in the study, 150 (98.7%) contained only one type of bacteria. While 116 (77.3%) of these 150 strains stained as Gram-positive (107 cocci and nine bacilli), and 30 (20%) stained as Gram-negative bacilli. The remaining four strains (2.7%) stained as Gram-positive, but they were placed in a separate category because they were yeast. In the other two (1.3%) samples, two bacterial species (Escherichia coli and Staphylococcus aureus), one Gram-positive and one Gram-negative were detected. In the microscopic examination of the stained cells, these two specimens, that contained more than one type of microorganism, were not evaluated because these bacteria could not be separately tested for antibiotic susceptibility and because the bacteria must be inoculated onto appropriate media. In other words, these two samples were passaged and terminated 18–24 hours after incubation according to routine procedures.

For the identification and antibiotic susceptibility testing, 116 (77.3%) of the 150 microbial strains were analyzed using GP ID/AST kits because these strains were detected as being Gram-positive by Gram staining, and 30 (20%) strains evaluated using GN ID/AST kits because these strains were detected as being Gram-negative by Gram staining. Furthermore, four samples were determined using a YEAST/ID kit because they were observed as yeast in the Gram staining (Table I).

According to the results obtained the following morning, of the 116 Gram-positive strains studied by MALDI-TOF MS analysis, 71 (61.2%) were identified as coagulase-negative Staphylococcus (CoNS), and seven (6.0%) were identified as Staphylococcus aureus.
Rapid reporting of blood cultures

Table II

Distribution of bacteria identified by both methods at the genus and species level.

<table>
<thead>
<tr>
<th>Rapid method</th>
<th>n (%)</th>
<th>Routine method</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-positive bacteria (total)</td>
<td>116</td>
<td>Gram-positive bacteria (total)</td>
<td>116</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>7 (6.0)</td>
<td>Staphylococcus aureus</td>
<td>8 (6.9)</td>
</tr>
<tr>
<td>MRSA: 2, MSSA: 5</td>
<td></td>
<td>MRSA: 3, MSSA: 5</td>
<td></td>
</tr>
<tr>
<td>Coagulase-negative Staphylococci</td>
<td>71 (61.2)</td>
<td>Coagulase-negative Staphylococci</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus epidermidis: 45</td>
<td></td>
<td>Staphylococcus epidermidis: 48</td>
<td>76 (65.5)</td>
</tr>
<tr>
<td>Staphylococcus hominis: 16</td>
<td></td>
<td>Staphylococcus hominis: 18</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus schleiferi: 4</td>
<td></td>
<td>Staphylococcus schleiferi: 4</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus haemolyticus: 2</td>
<td></td>
<td>Staphylococcus haemolyticus: 2</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus capitis: 2</td>
<td></td>
<td>Staphylococcus capitis: 2</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus warneri: 2</td>
<td></td>
<td>Staphylococcus warneri: 2</td>
<td></td>
</tr>
<tr>
<td>Enterococci</td>
<td>20 (17.2)</td>
<td>Enterococci</td>
<td>20 (17.2)</td>
</tr>
<tr>
<td>Enterococcus faecalis: 18</td>
<td></td>
<td>Enterococcus faecalis: 18</td>
<td></td>
</tr>
<tr>
<td>Enterococcus faecium: 2</td>
<td>3 (2.6)</td>
<td>Enterococcus faecium: 2</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>Arcanobacterium haemolyticum</td>
<td>3 (2.6)</td>
<td>Arcanobacterium haemolyticum</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>Bacillus cereus/subtilis</td>
<td>2 (1.8)</td>
<td>Bacillus subtilis</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>Dermacoccus nishinomiyaensis</td>
<td>4 (3.5)</td>
<td>Dermacoccus nishinomiyaensis</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>Micrococcus luteus/lylae</td>
<td>3 (2.6)</td>
<td>Micrococcus luteus/lylae</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>Corynebacterium amycolatum</td>
<td>3 (2.6)</td>
<td>Corynebacterium amycolatum</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>Corynebacterium jeikieum</td>
<td></td>
<td>Corynebacterium jeikieum</td>
<td></td>
</tr>
<tr>
<td>Gram-negative bacteria (total)</td>
<td>30</td>
<td>Gram-negative bacteria (total)</td>
<td>30</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>15 (50)</td>
<td>Escherichia coli</td>
<td>15 (50)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>5 (16.7)</td>
<td>Pseudomonas aeruginosa</td>
<td>5 (16.7)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>5 (16.7)</td>
<td>Klebsiella pneumoniae</td>
<td>5 (16.7)</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td>3 (10.0)</td>
<td>Stenotrophomonas maltophilia</td>
<td>3 (10.0)</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>2 (6.7)</td>
<td>Acinetobacter baumannii</td>
<td>2 (6.7)</td>
</tr>
<tr>
<td>Yeasts</td>
<td>4</td>
<td>Yeasts</td>
<td>4</td>
</tr>
<tr>
<td>Candida parapsilosis</td>
<td>2 (50)</td>
<td>Candida parapsilosis</td>
<td>2 (50)</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>2 (50)</td>
<td>Candida tropicalis</td>
<td>2 (50)</td>
</tr>
</tbody>
</table>

MRSA – methicillin-resistant Staphylococcus aureus; MSSA – methicillin-susceptible Staphylococcus aureus; n – number

One isolate, identified as *S. epidermidis*, was, in fact, methicillin-resistant *S. aureus* [MRSA] as demonstrated with both the routine method and the MALDI-TOF system, while 20 (17.2%) were *Enterococcus* species. These values, when studied by the routine method, were as follows: 76 (65.5%), 8 (6.9%), and 20 (17.2%), respectively. No isolates of vancomycin-resistant enterococci (VRE) were found in this study. In addition, 15 (50%) of Gram-negative isolates were identified as *E. coli*, five as *P. aeruginosa*, five as *Klebsiella pneumoniae*, three as *Stenotrophomonas maltophilia*, and two as *Acinetobacter baumannii*. When the yeast isolates were analyzed using the appropriate kit (YEAST/ID, BD, USA) and the appropriate McFarland (1.8–2.2) standard (BD PhoenixSpec, BD, USA), the results obtained by both methods were found to be fully compatible (two of the four specimens were identified as *Candida parapsilosis* and the other two as *Candida tropicalis*) (Table II).

Two of the three strains identified as *S. epidermidis* were identified by MALDI-TOF as *Micrococcus luteus/lylae*, and one was identified as *Arcanobacterium haemolyticum*. One isolate was identified as *Corynebacterium amycolatum*, which should have been identified as *S. aureus*. One of the two isolates, which should have been identified as *Staphylococcus hominis*, was identified as *Corynebacterium jeikieum*. As a result, 138 (92%) out of 150 isolates were correctly identified, while the number misidentified was only 12. In fact, all false identifications at the genus or species level were also associated with Gram-positive bacteria (Table III).

These values were compared with the identification and antibiotic susceptibility results obtained by the routine procedures. According to this comparison, for 138 (92%) of the 150 strains studied, the same results for the identification testing were obtained using
both methods, demonstrating complete consistency between the two methods. However, a discrepancy was detected between the two methods for 12 (8%) strains, with small differences observed in only Gram-positive bacteria. Conversely, for the 30 Gram-negative strains, 100% consistency was observed between the rapid method and the MALDI-TOF MS system. Two samples were terminated without processing because they contained more than one type of microorganism (polymicrobial) and were not evaluated. Therefore, when the identification and antibiotic susceptibility tests of all the Gram-negative bacteria were compared, no discrepancy occurred between the results from either method (of the 150 strains, 30 [20%] Gram-negative bacilli continued to be studied; the same identification and antibiotic susceptibility results were obtained with both methods). No difference was observed between the results obtained by both methods for all strains of enterococci belonging to Gram-positive bacteria (20 [13.3%] of the 150 strains). However, when other Gram-positive bacteria were evaluated, a small inconsistency (identification of different microorganisms at the genus or species level using each method) equal to 8% was observed between these methods. In addition, this inconsistency was also observed in the results obtained for the Gram-positive strains, which can be regarded as indicative of contamination (Table IV).

The agreement for the AST results performed by both methods are the same in terms of the MIC values (100% of similarity) for most of the antimicrobials (e.g.,

<table>
<thead>
<tr>
<th>Organisms</th>
<th>MALDI-TOF Biotyper scores</th>
<th>Rapid method n</th>
<th>Routine method n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-positive bacteria</td>
<td>116</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>0 0 8 8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>0 12 36 48</td>
<td>45</td>
<td>48</td>
</tr>
<tr>
<td>Staphylococcus hominis</td>
<td>0 2 16 18</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Staphylococcus schleiferi</td>
<td>0 0 4 4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Staphylococcus haemolyticus</td>
<td>0 0 2 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Staphylococcus capitis</td>
<td>0 0 2 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Staphylococcus warneri</td>
<td>0 0 2 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>0 0 18 18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Enterococcus faecium</td>
<td>0 0 2 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Arcanobacterium haemolyticum</td>
<td>0 1 1 2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bacillus cereus/subtilis</td>
<td>0 0 0 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>0 0 2 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Dermacoccus nishinomiyaensis</td>
<td>0 0 2 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Microoccus luteus/lyiae</td>
<td>0 1 1 2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Corynebacterium amycolatum</td>
<td>0 1 1 2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Corynebacterium jeikeium</td>
<td>0 1 1 2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Gram-negative bacteria</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>0 0 15 15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>0 1 4 5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>0 0 5 5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td>0 0 3 3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>0 0 2 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Yeasts</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Candida parapsilosis</td>
<td>0 0 2 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>0 0 2 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0 19 131 150</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

MALDI-TOF MS – matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; n – number
Table IV
Analysis of the compatibility between the identification results of the rapid method when compared with the MALDI-TOF MS.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Full consistency n (%)</th>
<th>Misidentified n (%)</th>
<th>Not identified n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-positive bacteria</td>
<td>104 (89.7)</td>
<td>12 (10.3)</td>
<td>0</td>
</tr>
<tr>
<td>Gram-negative bacteria</td>
<td>30 (100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yeasts</td>
<td>4 (100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>138 (92)</td>
<td>12 (8)</td>
<td>0</td>
</tr>
</tbody>
</table>

MALDI-TOF MS – matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; n – number

Table V
Distribution of the resistance profiles for Gram-positive and Gram-negative bacteria as a result of the antibiotic susceptibility testing when both methods were applied.

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>The rapid method, n (%)</th>
<th>The routine method, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>I</td>
</tr>
<tr>
<td>Amikacin</td>
<td>28 (93.3)</td>
<td>–</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>18 (19.1)</td>
<td>–</td>
</tr>
<tr>
<td>Amoxicillin/Clavulanic acid</td>
<td>18 (15.8)</td>
<td>–</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>18 (60)</td>
<td>1 (3.3)</td>
</tr>
<tr>
<td>Cefepime</td>
<td>20 (66.7)</td>
<td>–</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>–</td>
<td>36 (41.9)</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>10 (33.3)</td>
<td>10 (33.3)</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>18 (60)</td>
<td>–</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>82 (66.1)</td>
<td>–</td>
</tr>
<tr>
<td>Colistin</td>
<td>30 (100)</td>
<td>–</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>50 (53.2)</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>71 (75.5)</td>
<td>23 (24.5)</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>28 (93.3)</td>
<td>–</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>14 (14.9)</td>
<td>–</td>
</tr>
<tr>
<td>Fusid acid</td>
<td>35 (40.7)</td>
<td>–</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>66 (53.2)</td>
<td>–</td>
</tr>
<tr>
<td>Imipenem</td>
<td>28 (93.3)</td>
<td>–</td>
</tr>
<tr>
<td>Meropenem</td>
<td>28 (93.3)</td>
<td>–</td>
</tr>
<tr>
<td>Linezolid</td>
<td>94 (100)</td>
<td>–</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>12 (12.8)</td>
<td>–</td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>10 (33.3)</td>
<td>10 (33.3)</td>
</tr>
<tr>
<td>Rifampin</td>
<td>62 (66)</td>
<td>–</td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>94 (100)</td>
<td>–</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>35 (40.7)</td>
<td>–</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>84 (89.4)</td>
<td>8 (8.5)</td>
</tr>
<tr>
<td>TMP/SX</td>
<td>55 (44.4)</td>
<td>–</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>94 (100)</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>1102 (55.5)</td>
<td>89 (4.5)</td>
</tr>
</tbody>
</table>

n – number; I – intermediate; R – resistant; S – susceptible; TMP/SX – Trimethoprim/Sulfamethoxazole

vancomycin, teicoplanin,ampicillin, and linezolid), whereas the lowest agreement value was obtained for the piperacillin/tazobactam combination (Table V). However, when all the antibiotic susceptibility results between the two methods were examined, the ratio of the full agreement was 97.4%, the VME ratio (0.8%) was slightly higher than the ME ratio (0.1%), and the mE value was found as expected: 33 (1.7%) (Table VI).
Table VI
Categorical distribution of discrepancies in the antibiotic susceptibility results of the rapid method compared to the routine method.

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Agreement n (%)</th>
<th>mEs n (%)</th>
<th>MEs n (%)</th>
<th>VMEs n (%)</th>
<th>Total n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>30 (100)</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>94 (100)</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Amoxicillin/Clavulanic acid</td>
<td>114 (100)</td>
<td></td>
<td></td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>26 (86.7)</td>
<td>1 (3.3)</td>
<td>3 (10)</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Cefepime</td>
<td>24 (80)</td>
<td></td>
<td>6 (20)</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>85 (98.8)</td>
<td>1 (1.2)</td>
<td></td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>30 (100)</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>30 (100)</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>108 (87.1)</td>
<td>10 (8.1)</td>
<td>6 (4.8)</td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>Colistin</td>
<td>30 (100)</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>93 (98.9)</td>
<td>1 (1.1)</td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>88 (93.6)</td>
<td>6 (6.4)</td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>30 (100)</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>94 (100)</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Fusidic acid</td>
<td>85 (98.8)</td>
<td>1 (1.2)</td>
<td></td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>123 (99.2)</td>
<td>1 (0.8)</td>
<td></td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>Imipenem</td>
<td>30 (100)</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Meropenem</td>
<td>30 (100)</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Linezolid</td>
<td>94 (100)</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>94 (100)</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>22 (73.3)</td>
<td>8 (26.7)</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Rifampin</td>
<td>94 (100)</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>94 (100)</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>86 (100)</td>
<td></td>
<td></td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>92 (97.9)</td>
<td>2 (2.1)</td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>TMP/SX</td>
<td>120 (96.8)</td>
<td>3 (2.4)</td>
<td>1 (0.8)</td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>94 (100)</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Total</td>
<td>1934 (97.4)</td>
<td>33 (1.7)</td>
<td>1 (0.1)</td>
<td>16 (0.8)</td>
<td>1984</td>
</tr>
</tbody>
</table>

n – number; mEs – minor errors; MEs – major errors; VMEs – very major errors

Discussion

To date, a limited number of studies have been conducted to use rapid methods to determine the type of organisms that grow in blood cultures and evaluate their antibiotic susceptibility. However, the rapid identification of infectious agents circulating in patients’ blood and the determination of the species and the correct antibiotic to be used will shorten the treatment time by 12 hours, and reduce the cost. The early identification of bloodstream infections allows for the early modification of antimicrobial treatment and a diminished need for other diagnostic tests. Thus, patients’ hospital stay can be shortened, and expenditures on patients can be reduced (Beekmann et al. 2003).

In a study conducted by a group of researchers, 501 microorganisms from blood-circulating infections were detected in the patients with bacteremia or candidiasis with MALDI-TOF with the Antimicrobial Stewardship Team test. MALDI-TOF analysis of 245 patients in the intervention group and 256 patients in the preintervention group showed reductions in the identification times (84 hours to 56 hours), effective antibiotic treatment times (30 to 20 hours), and optimal antibiotic treatment times (90 to 47 hours) for the organism (Huang et al. 2013). Our study reports the identification and antibiotic susceptibility tests that are much shorter (< 24 hours) than conventional tests (routinely > 72 hours). In contrast to routine tests, this study achieved 97% success without having to use any expensive methods.

In a study (Dodemont et al. 2014), nucleic acid-based tests were performed on Gram-positive and Gram-negative bacteria from blood cultures; the test
was designed to rapidly identify multiple bacterial strains and the resistance associated with these strains. This method was compared with the routine method for 117 isolates, and the identification and antibiotic resistance markers were reported as correct and accurate, achieving 97% and 92% rates of detection of pathogens from the blood cultures and reduced laboratory times. In our study, the observed 92% accurate identification and 97% antibiotic susceptibility compliance results were similar.

In another study (Mancini et al. 2014), a total of 102 positive blood cultures were tested with the Verigene BC-GN test, which detected certain Gram-negative bacteria and selected resistance genes. Ninety-eight percent of the isolates were correctly identified, and 29% were identified as those carrying the resistance genes (CTX-M, KPC, VIM, and OXA genes). The other researchers (Hill et al. 2014) included 54 blood culture samples that gave positive signals between 7 and 23 hours using the Verigene BC-GN test, and correctly identified 51 of these samples as Gram-negative bacilli, whereas Mancini et al. (2014)) reported that they correctly identified the full-length carbapenemase enzyme. In a test run, the identification of the organisms was reported to be faster than the conventional method by an average of 24 hours. The other group (Sothoron et al. 2014) studied the blood cultures of 126 patients with Gram-negative bacteremia using an antimicrobial stewardship program test. In a study evaluating the VITEK 2 system with the Verigene BC-GN test, the mean survival rate in the optimal treatment was shorter in the post-intervention group than in the pre-intervention group (38 to 49 hours, respectively). The rapid method in our study does not require any additional costs, systems, or devices, and it is 24 hours shorter than in our study does not require any additional costs, systems, or devices, and it is 24 hours shorter than the abovementioned study. We believe our method can be used for all bacteria instead of only certain bacteria.

The MALDI-TOF and a VITEK 2 system were used together in a study by Machen and coworkers (Machen et al. 2014) performed to the same-day identification and the full panel antimicrobial susceptibility testing of bacteria from a total of 100 positive blood culture bottles. Compared to conventional methods, the direct results were 94% correctly identified with the VITEK system, and the identification and antibiograms were concluded on the same day. In our study, direct results were also reported, with a high success rate of 94% being achieved (without 24 hours of incubation) using 5 ml of liquid from the blood culture fluid and without the need for a device that adds costs to the conventional method.

In a study conducted by another group of researchers (Banerjee et al. 2015), the detection of bacterial and fungal resistance genes in the strains directly identified in 617 positive blood cultures was performed using a direct rapid multiplex PCR (rmPCR). It was followed by the evaluation of the treatment duration and mortality. The shortest period after Gram staining needed to appropriate evaluation of antimicrobial susceptibility was achieved by rmPCR. These results allowed for the reduction of mortality and the use of antibiotics. Because we were working with fewer samples in our study (which would not significantly change the results), the rapid delivery of blood culture results was critical to the patient; in terms of cost, the centrifugation of blood culture bottles with positive signals required no extra cost, and this method was used to obtain faster results (<24 hours).

In a study by Stevenson et al. (2010), a total of 212 patient samples, 179 of which were positive blood cultures and 33 of which were isolated broth species, were prepared and processed for MALDI-TOF analysis. In this study, 42 strains (12 Propionibacterium acnes and seven S. epidermidis) with spectral scores <1.7 could not be identified. Twenty-four strains with scores between 1.7 and 1.9 were correctly identified (six were S. epidermidis). The strains with scores of 1.9 were correctly identified at the species level. Similarly, in our study, the species determination and antibiotic susceptibility testing of strains from a single-species culture in the blood cultures were performed using a rapid method. Alternatively, for rapid reporting (97% success) of the antibiotic susceptibility results, we used a direct analysis with a centrifugation process. Notably, the use of mass spectrometry technology can only be established in large laboratories.

The other researchers (Lupetti et al. 2010) studied 57 blood cultures that were collected from different clinics and found to be a single-species culture of Gram-positive cocci by Gram staining. The addition of saponin in the new procedure was compared with the routine method. Discrepancies between the two methods were resolved by ID32 Staph or by Rapid ID32 Strep and E-test. With the new method, 44 (80%) of the Gram-positive cocci were detected as CoNS (34 [62%] S. epidermidis). In our study, unlike the one above, not only Gram-positive bacteria but also other bacteria and yeasts were studied. In addition, saponin or a similar substance was not used in this study. Among the identification values obtained by the rapid method, the CoNS rate was slightly lower (62%). Although our antibiotic susceptibility findings were similar, we notably had few VMFs, which maybe because of the presence of gel in the tubes.

In another study (Chen et al. 2015), Gram staining was performed after samples were cultured on blood; this method was performed on 400 positive-signal blood cultures on weekdays between 8:00 am and 3:00 pm. Samples that were a single species culture after the Gram staining were included in the study. While
358 (89.5%) isolates were identified correctly by VITEK MS, 343 (85.8%) were identified correctly at the species level, and 15 (3.7%) were identified correctly at the genus level. Of these definitions, 146 (96.1%) isolates of 152 Gram-negative bacilli (78 E. coli and 25 Klebsiella species isolates) were correctly identified, while 197 (79.4%) isolates of 248 Gram-positive organisms (76 of 95 CoNS and 56 of 58 S. aureus) were correctly identified. In our study, Gram-negative bacilli and yeasts were correctly identified in 100%, and Gram-positive bacteria were correctly identified in approximately 90%. These identifications were obtained without any culturing on media or incubation after centrifugation; instead, the identification occurred by loading directly into the culture antibiogram device. In addition, enterococci were also completely identified when compared with MALDI-TOF MS.

In one study (Tian et al. 2016), 485 positive specimens were evaluated by injecting various body fluids into blood culture bottles. Then, the researchers combined MALDI-TOF MS with a VITEK AST system and conducted rapid microbial identification (RMI), and rapid multiple AST (RMAST). Then, the RMAST results were compared with the standard method results. Discrepancies in the MIC values were resolved by broth dilution, according to CLSI (2015) guidelines. RMI correctly identified Gram-negative and Gram-positive bacteria (98.9%, and 87.2%, respectively), and fungi (75.7%). As a result, the RMI and RMAST were completed 18–36 hours in advance of the report notification. In our study, only blood cultures were evaluated. A longer centrifugation time with a lower speed was utilized. After comparable identification and antibiotic susceptibility testing procedures, similar results were obtained. Our report notifications were made within 24 hours.

Recently, in a study conducted by Campigottoa et al. (2018), MALDI-TOF MS analysis was used for the identification of bacteria directly from blood cultures, followed by antibiotic susceptibility tests and rapid determination of methicillin-resistance and beta-lactam-resistance status. A total of 125 positive blood cultures sent from various intensive care units were included in the study. The VITEK 2 system and appropriate AST cards were used to determine the antibiotic susceptibility, and standard procedures were applied. When compared with the routine method, 91.2% were correctly identified at the genus level, 82.4% had species-level compatibility, and eight unidentified isolates at the genus level were Gram-positive organisms. Gram-negative bacteria were detected at a high species level of 100% and 93%, respectively. All four fungal isolates C. albicans, C. parapsilosis, and C. tropicalis were correctly identified at the species level. In contrast to the above study, in our study, the centrifugation time was longer, the rpm was lower, and the bacterial suspension was prepared and loaded directly onto the Phoenix 100 instrument. Similar error rates (2.6% in total) and agreement (97%) were observed. Furthermore, in our study, the goal of reporting results in 24 hours was successfully achieved.

Conclusions

The search for methods that do not require additional financing and are widely available is on-going. In this study, 5 ml of blood samples were taken directly from blood cultures with positive signals, and the results were obtained within 24 hours. It was achieved with centrifugation, Gram staining, and an appropriate antimicrobial panel (Gram-positive or Gram-negative). The Gram-negative strains were reported with 100% consistency, and the Gram-positive strains were reported with 90% consistency among the new and routine methods. For the Gram-positive bacteria that were inconsistently identified with these methods, we believe that further studies in this area will help to distinguish pathogenic and nonpathogenic strains. In particular, we believe that unnecessary antibiotic treatments can be avoided for patients infected with Gram-positive bacteria, which can be identified as contaminants sooner than Gram-negative bacteria. Due to the rapid culture antimicrobial susceptibility testing used in this study, antibiotic therapies could begin early, since the patients’ blood culture results will be reported very quickly (in about 12 hours) without the need for extra costs. In addition, since this can shorten the length of hospital stay of patients, medical and economic benefits will be achieved at the national level. We also believe that the volume of the sample taken directly from the bottles should be increased (to at least 10 ml) and that employees should have sufficient experience; then, the efficiency of this method can be higher. However, the most crucial limitation of this method is the presence of more than one species in the blood cultures (polymicrobial cultures). Finally, the rapid method used in the study allows obtaining the diagnosis of bloodstream infections in a short span of 12 hours and with an accuracy of 97% (100% for Gram-negative bacteria).

List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>antibiotic susceptibility test</td>
</tr>
<tr>
<td>BC-GN</td>
<td>Gram-negative blood culture</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical and Laboratory Standards Institute</td>
</tr>
<tr>
<td>CoNS</td>
<td>coagulase-negative Staphylococcus</td>
</tr>
<tr>
<td>EMB</td>
<td>eosin methylene blue</td>
</tr>
<tr>
<td>FA</td>
<td>formic acid</td>
</tr>
<tr>
<td>GN</td>
<td>Gram-negative</td>
</tr>
<tr>
<td>GP</td>
<td>Gram-positive</td>
</tr>
<tr>
<td>HCCA</td>
<td>α-cyano-4-hydroxycinnamic acid matrix solution</td>
</tr>
</tbody>
</table>

Mancini N, Infurnari I, Ghidoli N, Valzano G, Clementi N, Burioni R, Clementi M. Potential impact of a microarray-based...
https://doi.org/10.1128/JCM.00142-14

https://doi.org/10.1128/AAC.49.9.3640-3645.2005

https://doi.org/10.4103/0022-3859.184958

https://doi.org/10.1128/JCM.02399-13

https://doi.org/10.1128/JCM.02161-15

https://doi.org/10.1128/JCM.01541-09

https://doi.org/10.3389/fmicb.2016.00523

https://doi.org/10.1093/jac/dku083

https://doi.org/10.5152/tpa.2015.2593
The Resurgence of Measles Infection and its Associated Complications in Early Childhood at a Tertiary Care Hospital in Peshawar, Pakistan

MUHAMMAD ILYAS1*, SUMERA AFZAL1, JAMSHAID AHMAD1, SAAD ALGHAMDI2 and MUHAMMAD KHURRAM3

1Centre of Biotechnology and Microbiology, University of Peshawar KP, Pakistan
2Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University Makkah Saudi Arabia
3Department of Pharmacy, Abasyn University, Peshawar KP, Pakistan

Submitted 1 February 2020, revised 31 March 2020, accepted 31 March 2020

Abstract
Measles infection is of substantial interest to immunologists due to its paradoxical interaction with the immune system. After the acquisition of the measles infection, secondary infection plays a pivotal role in measles-related deaths. A cross-sectional study conducted between December 2018 and July 2019 is presented here. A total of one hundred children of both genders presented with measles complications were included following WHO criteria. Measles confirmation was done by quantitative determination of anti-measles antibodies (IgM) in patients' sera while patient-related demographic data, vaccination status, and other clinical information were obtained on a separate form. The number of female patients (52%) slightly exceeded the number of males (48%). 43% of patients' parents were illiterate, and half of the patients (50%) were from a poor background. The majority of children (76%) who presented with the complications did not receive a measles vaccine. 56% of children were breastfed while 58% received vitamin A supplements but developed complications. The elevated levels of anti-measles IgM were observed in 77% of cases. In both genders, the major complications were pneumonia, lower respiratory tract infection (LRTI), acute diarrhea, diarrhea and LRTI, pneumonia and diarrhea, otitis media and pneumonia, myocarditis and LRTI, and pneumothorax. The majority of the infected children (n = 48) under 12 months of age had associated complications. It has been observed that the measles virus strikes early age children in the northwestern region of Pakistan, which is an alarming situation and is associated with the aforementioned complications, especially in unvaccinated children. Anti-measles IgM is an important serological parameter for early diagnosis of measles infection.

Keywords: measles, pneumonia, subacute-sclerosing panencephalitis, IgM, myocarditis, pneumothorax

Introduction
Measles is a highly contagious systemic viral infection caused by the Measles virus (MeV). This virus belongs to the Paramyxoviridae family, has ssRNA genome and a lipid envelope. It spreads through respiratory droplets and also through conjunctiva contact (Khan et al. 2013). Its diagnostic criteria include high-grade fever (38°C lasting for > 3 days), generalized maculopapular rashes, cough, coryza, and conjunctivitis (WHO 2018a). Measles viral infection is the leading cause of morbidity and mortality worldwide among children, even though there is a safe and effective live attenuated viral vaccine (Wolfson et al. 2009). In 2010, there were about 20 million measles infections reported with 0.14 million deaths (Simons et al. 2012). The death toll surged to approximately 0.16 million in 2011, with 95% of deaths reported from developing countries (WHO 2013). Presently, 45 million new measles cases were recorded, with one million deaths per year (Li et al. 2015). In 2011, measles hit 4386 people in Pakistan, with 64 deaths reported. In 2012, 2,676 laboratory-confirmed cases, and 310 deaths were reported in this country (Khan and Qazi 2014; CDC 2018). Measles viral infection is of substantial interest to immunologists due to its paradoxical interaction with the immune system. Many manifestations of the disease like rashes, conjunctivitis, and stomatitis are tagged with the immune response to
infection. This immune response clears the virus from the body, providing lifelong immunity. After the acute phase of measles infection, the presence of the viral genome and its proteins in the lymphatic tissues leads to a suppressed immune system. Furthermore, as the immune suppression spans to several weeks, there is an opportunity for secondary microbial infections, which increase the mortality rate among children (Beckford et al. 1985; De Vries et al. 2012).

After measles infection, secondary infections play a crucial role in measles-related deaths. Lower respiratory tract infections (LRTI) like bronchial pneumonia, are the leading cause of death in measles cases, particularly among children under 5 years of age (Li et al. 2015). Other serious complications, particularly among immunocompromised and malnourished children, include blindness, acute diarrhea, otitis media, encephalitis, and myocarditis (WHO 2016). One of the fatal complications related to measles is sub-acute sclerosing panencephalitis (SSPE), which is a progressive, disabling, and deadly brain disorder of the central nervous system, usually developed between 7 and 10 years after a person is infected by the measles virus (Bellini et al. 2005). In a recent study conducted in Pakistan, complications like pneumonia, oral lesions, and acute diarrhea were reported due to measles infection among unvaccinated children (Hussain et al. 2016). Associated factors that are instrumental in the generation of complications include vitamin A deficiency, weakened immunity, living in congested environments, and poor access to health care facilities (Sultana et al. 2015).

Developed countries were successful in the reduction of measles infections through effective immunization. Under the auspices of the WHO, a campaign of immunization against communicable diseases started in Pakistan in 1978 (Bugvi et al. 2006). However, like other developing countries, the coverage of measles vaccination is below 60% in Pakistan (Mere et al. 2019). In preventing and reduction of measles infection and associated complications, the only hope is effective measles vaccination, which can significantly reduce the incidence of measles infection and related deaths among children (Gafaar et al. 2003). Unfortunately, recent outbreaks of measles infection (in 2018) in Pakistan occurred in different regions of the country (WHO 2019). The primary reasons for these measles episodes are lack of awareness regarding vaccination among the general population due to reduced literacy rate, lack of motivation among health care staff, and poor health care infrastructure.

Keeping in view the current scenario, this study was designed to investigate the measles incidence and its associated complications among the children of Khyber Pakhtunkhwa (KP) located in the northwestern region of Pakistan.

Experimental

Materials and Methods

The present study is a cross-sectional study conducted in the pediatric unit of the Lady Reading Hospital (LRH), a tertiary care hospital in District Peshawar, KP. Measles cases were defined in accordance with WHO criteria (2018), i.e., fever (38°C lasting for more than three days) and maculopapular rash, cough, coryza, or conjunctivitis. Measles cases were confirmed by detecting measles-specific IgM antibodies (anti-MeV IgM) in a patient serum through enzyme-linked immunosorbent assays (ELISA). A total of one hundred measles cases were studied for anti-MeV IgM confirmation. Venereal blood samples were collected aseptically between December 2018 and July 2019 from measles-infected children of both genders, above four months of age but under ten years, with measles complications and having been admitted to the pediatric unit of LRH Peshawar. Children aged less than 4 months or over ten years old or having congenital heart disease, thalassemia, or other congenital diseases were excluded from the study. Measles complications were diagnosed by physicians based on clinical findings with the support of laboratory and radiological findings, like X-ray chest, electrocardiogram, serum electrolytes, and complete blood count.

Patient demographic data and clinical information like age, sex, socio-economic status, educational level of parents, feeding history, vitamin A intake, and complications were recorded on a separate pre-designed form. The measles vaccination status of a patient was established either through a vaccination card or through verbal confirmation with parents (if vaccination card not available). A written consent form was given to the parents, explaining the use of their data for research and publication.

Detection of measles-specific IgM antibodies. For the detection of measles-specific IgM antibodies, a fresh blood sample of about 2 ml from measles-infected children was collected by the vein puncture method in a gel tube. All the samples were centrifuged at 8,000 rpm in order to obtain a clear serum and to send for estimation of measles-specific IgM antibodies (ORGENTEC Diagnostika Alegria Anti Measles IgM Assay). The measuring range of Alegria assay was 0–200 U/ml. The cut-off value for the assay was 25 U/ml. Interpretation of the result was as follows: patient value less than 20 U/ml was considered negative, while a value between 20–25 U/ml was considered borderline, and a value > 25 U/ml was considered positive (Alegria Orgentec).

Principle of the assay. Detection of measles-specific IgM antibodies was done using Alegria®, a fully automated random access analyzer. The Alegria® Test Strip is designed for a single determination of one patient
sample, which holds a complete set of reagents, including enzyme conjugate (Anti-human IgM HRP labeled), enzyme substrate (Tetramethyl benzidin), sample buffer, and a test specific control (Test specific antibodies). Antibodies quantification is based on an indirect enzyme-linked immune reaction in which purified particles of inactivated measles virus coated on a well surface interact with the corresponding anti-measles antibodies present in patient serum. After subsequent washing, an enzyme conjugate that binds to the immobilized antibody-antigen complex is added. After incubation, the addition of the enzyme substrate results in the development of a blue color, which is proportional to the concentration of the antibody-antigen complex measured at λ = 650 nm.

Results

Patients’ demographic data (Table I) shows that out of 100 patients, 52 (52%) were females with a mean age of 15.06 (± 9.42), while 48 (48%) were males aged 15.94 (± 9.70). As far as the educational status of the parents was concerned, a high percentage (43%) were uneducated, while 28% had Grade 10 (Secondary education level), and 22% had Grade 5 level (Primary education) educational competence. Only 7% of parents were found to have beyond Grade 10 level education (Higher education).

As far as the socio-economic position is concerned, half (50%) of the patients belonged to low-income families (≤ $1,700 per annum), while 38% were from middle-class families (≥ $1,701 and ≤ $4,300 per annum). Only 7% of patients were from the upper class (≥ $4,301 per annum). Criteria of income per annum of the parents were sited, according to Hussain et al. (2016) with little modification.

Breast-feeding of babies in this region of Pakistan is a common practice in early childhood, although trends are changing. It was observed that 56% of children were breastfed while 32% were given formula milk. A comparatively small group of babies (12%) was found to be on formula as well as being breast-fed. It was also observed that 58% of measles-infected children had received vitamin A drops during the routine vaccination schedule.

The antibody (IgM) levels (Fig. 1) were found to be elevated in a majority (77%) of cases, while 8% of cases indicated intermediate levels, and 15% were found negative for the IgM presence. The measles infection was found in 76% of children who did not receive the vaccination, but 24% of cases were resurgence, where children had received one dose of measles vaccination (Table I).

The gender distributions of measles-associated complications are given in Fig. 2. In male patients major complications were pneumonia (n = 20; 41.7%) followed...
by LRTI (n = 8; 16.7%), acute diarrhea (n = 2; 4.2%), diarrhea and LRTI (n = 8; 16.6%), pneumonia and diarrhea (n = 3; 6.2%), otitis media and pneumonia (n = 4; 8.3%), myocarditis and LRTI (n = 2; 4.1%), and pneumothorax (n = 1; 2.0%), respectively. In female patients, pneumonia (n = 21; 42.4%) was the major complication followed by LRTI (n = 10; 19.2%), otitis media (n = 2; 3.8%), acute diarrhea (n = 4; 7.7%), diarrhea and LRTI (n = 10; 19.2%), pneumonia and diarrhea (n = 3; 5.7%), myocarditis and LRTI (n = 1; 1.9%), SSPE (n = 1; 1.9%), and pneumothorax (n = 1; 1.9%).

The age distribution (Table II) of clinical complications showed a high frequency of pneumonia (n = 23; 47.9%), followed by LRTI (n = 8; 16.7%), acute diarrhea (n = 4; 8.3%), diarrhea and LRTI (n = 6; 12.5%), pneumonia and diarrhea (n = 3; 6.25%), otitis media and pneumonia (n = 2; 4.1%), myocarditis and LRTI (n = 1; 2%), and pneumothorax (n = 1; 2%) in patients less than 12 months old. While for the age group 12–24 months, pneumonia (n = 15; 37.5%) was the major complication, followed by LRTI (n = 8; 20%), otitis media (n = 1; 2.5%), acute diarrhea (n = 1; 2.5%), diarrhea and LRTI (n = 8; 20.0%), pneumonia and diarrhea (n = 2; 5%), otitis media and pneumonia (n = 1; 2.5%), myocarditis and LRTI (n = 2; 5%), SSPE (n = 1; 2.5%) and pneumothorax (n = 1; 2.5%). Complications presentation for the age group >24 months were predominated by pneumonia (n = 3; 25%) and diarrhea + LRTI (n = 3; 25%), followed by LRTI (n = 2; 16.7%), otitis media (n = 1; 8.3%), acute diarrhea (n = 1; 8.3%), pneumonia and diarrhea (n = 1; 8.3%) and otitis media and pneumonia (n = 1; 8.3%). In the current study, the majority of the children (n = 76)

<table>
<thead>
<tr>
<th>Clinical complications</th>
<th>Age-wise distribution</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 12 months</td>
<td>12–24 months</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>23 (47.9%)</td>
<td>15 (37.5%)</td>
</tr>
<tr>
<td>LRTI</td>
<td>8 (16.7)</td>
<td>8 (20%)</td>
</tr>
<tr>
<td>Otitis media</td>
<td>–</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td>Acute diarrhea</td>
<td>4 (8.3%)</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td>Diarrhea + LRTI*</td>
<td>6 (12.5%)</td>
<td>8 (20%)</td>
</tr>
<tr>
<td>Pneumonia + Diarrhea</td>
<td>3 (6.25%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Otitis media + Pneumonia</td>
<td>2 (4.1%)</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td>Myocarditis + LRTI</td>
<td>1 (2.0%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>SSPE†</td>
<td>–</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>1 (2.0%)</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>40</td>
</tr>
</tbody>
</table>

* LRTI – Lower respiratory tract infection
† SSPE – Subacute sclerosing panencephalitis
suffering from measles complications were unvaccinated, while only 24 children who had received one dose of measles vaccination were shown in Fig. 4.

Discussion

Measles is a highly contagious viral disease that leads to increased morbidity and mortality among children, especially in developing countries. Measles infection has the potential to lead to life-threatening complications (Filia et al. 2013).

Eradication of measles is an crucial section of Millennium Development Goal 4 of the WHO. Pakistan, as a member of the Eastern Mediterranean Region, agreed in 1997 to eliminate measles infection by 2010 (Gafaar et al. 2003). Unfortunately, the resurgence of measles is continuously reported from different regions of Pakistan over the last decade. According to a WHO 2019 report, during 2011, 2012, and 2013, the number of confirmed measles cases in Pakistan was 2,676, 8,048, and 8,030, respectively. More recently, in 2017 and 2018, significant measles episodes were reported throughout the country (Fig. 3). According to the Pakistan demographic health survey and social living standard measurement, the Expanded Program on Immunization (EPI) coverage is currently 65% and each year about 2 million Pakistani children do not receive their first dose of measles vaccination, while the coverage of the second dose of measles is lower (<60%) (CDC 2018).

The upsurge of measles in Pakistan could be attributed to several factors. Graft in the healthcare system, which encompasses illicit allocation of funds, poor attitude of healthcare workers, quackery, fake vaccination campaigns, and marketing of expired drugs, plays a central role. Another hurdle is dissatisfactory health infrastructure in the country contributes to the resurgence of measles outbreaks (Islam et al. 2019).

Detection of measles-specific immunoglobulin (IgM), produced as a result of the primary immune response, serves as the gold standard in accurate diagnosis of measles infection. These antibodies are easily detected in patient serum within a few days after the onset of the rashes through an enzyme-linked immunosorbent-based assay (Xavier et al. 2019). In the current study, the WHO-recommended ELISA technique was used for the detection of serum antibodies with 77% positive results (Patient value > 25 IU). Grey zone or borderline titers, i.e., values between 20–25 IU, were observed in 8% cases, while 15% of cases were negative (Patient value < 20 IU). The borderline titers or seronegative results may be attributed to inadequate immune responses of the host or maybe due to early blood sample collection before elevated IgM level in the serum of the respective patients. IgM may also be negative in a true measles case if the specimen is collected too early or too late in the course of the illness. In the first 72 hours after rash onset, a negative result for measles IgM may be obtained from up to 30% of measles cases. The sensitivity of the test is lower ≤ three days after rash onset (WHO 2018b). The vitamin A deficiency often leads to increase in the risk of blindness among the measles-infected children. In the present study, vitamin A had been administered in 58% of measles-infected

![Fig. 3. Number of confirmed measles cases from 2006 to 2019 in Pakistan (WHO 2019; updates).](image-url)
children, although vitamin A administration is not a regular part of the vaccine schedule followed in Pakistan. Poor immune response, improper maintenance of cold chain during transportation, and neglectful attitude of health care staff may be factors leading to the development of complications. In the present study, vitamin A intake information was made through verbal communication with the parents of the children.

The age-wise distribution, status of vaccination, and incidence of measles infection for the period September 2018 to August 2019 in Pakistan was given in 2019 WHO report. The findings suggest an emergency and the need for quick intervention. Furthermore, prompt education on the awareness and benefits of immunization among the population of this region is needed.

In the present study, pneumonia (41%) and diarrhea were the major complications associated with measles infection, and these observations are similar to a report by Khan et al. (2013), while in a separate study conducted by Rashid et al. (2016), a slightly high frequency for the complications mentioned above was reported. In the present study, co-infections like diarrhea with LRTI, pneumonia and diarrhea, otitis media and pneumonia, and myocarditis and LRTI were observed. In the present study, the vaccination status of the measles-infected children was established through vaccination cards issued by EPI Health department KP, Pakistan. The vaccination status of the patients was confirmed through a vaccination card in more than 80 children. Only for a few children was vaccination status confirmed by parents through verbal communication. Negligence, low education status, and less awareness about vaccination schedules among the parents determine their mindset regarding the prevention of measles in this region. It is evident from the present study that significant factors that may contribute to the resurgence of measles infections include low vaccination (24 vaccinated babies versus 76 unvaccinated) that may be due to lack of vaccination awareness, poor health infrastructure, malnutrition, and missing of a booster dose. Malnutrition is a significant risk factor in measles-infected children around acquiring complications that lead to increased mortality among unvaccinated children. Furthermore, the majority of the infected children (76%) were not vaccinated, which highlights the higher risk of acquiring infection and resultant complications. In a report by Husain et al. (2016), 75% of children with pneumonia were malnourished, while 83.3% of such children also had diarrhea. In the present study, children under one year of age, particularly between 7–8 months, developed measles complications. The principal reason behind this may be the underdeveloped immune system that makes children more prone to this disease and its subsequent complications.

In Pakistan, the vaccination schedule for measles vaccination is nine months, while the booster dose is at 14 or 15 months (Table III). For this disease, it has been recommended that the administration of booster dose be made at 14 to 15 months of age, increasing the vaccine efficacy up to 99% and providing more protection compared to a single dose (De Serres et al. 2012). However, in the present research, we did not observe any booster dose administration for the children infected by measles. It is an alarming finding that necessitates
a mandatory administration of the primary as well as the booster dose among children.

Measles remains a leading cause of death among young children worldwide despite the availability of a live attenuated effective vaccine. In the present study, severe complications like pneumonia, acute diarrhea, myocarditis, and pneumothorax were observed in children under one year of age. Only one case of SSPE was observed that was confirmed through the detection of anti-measles antibodies in cerebrospinal fluid (CSF) of the patient. The number of children with SSPE may be underestimated; generally, it is developed 7–10 years after a person has measles, even though the person seems to have fully recovered from the illness.

Multiple outbreaks of measles have been reported from different parts of the world (Wolfson et al. 2009) and particularly from this region of Pakistan. It is not only worrisome but needs an effective strategy in the health care system to devise a national strategy for measles vaccinations. Combined efforts of the health care staff, awareness through social media, and related health professionals are required to augment awareness among the general public regarding the vaccination program and clinical consequences of measles infection in order to prevent the disease from resurging as endemic.

Conclusions

The measles virus has potentially fatal consequences at an early age of childhood, not only in Pakistan but worldwide, which is alarming. Major complications observed in the present case included pneumonia, LRTI, diarrhea, otitis media, myocarditis, and SSPE, with some patients presenting more than one complication. Primarily, the complications were observed among unvaccinated and among children vaccinated only with one dose of vaccine, which illustrates the importance of the measles vaccination. Moreover, the booster dose administration can be made mandatory in order to achieve better immunization. Furthermore, the workhorse method proved to be significant and can be effectively utilized in the early diagnosis of measles infection.

Authors’ contributions

MI carried out samples collection, participated in the experimental work, and wrote the manuscript. SA designed the overall study and critically reviewed the manuscript. JA, SAG, and MK helped in manuscript writing, drafting of tables of figures, and funds arrangement. All the authors edited and approved the final manuscript.

Acknowledgments

The authors are very grateful for the lab facilities of the Centre of Biotechnology and Microbiology University of Peshawar and Sarhad University of Science and Information Technology, Peshawar KP, Pakistan.

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

A Current Microbiological Picture of Mycobacterium Isolates from Istanbul, Turkey

BILGE SUMBUL1* and MEHMET ZIYA DOYMAZ2

1Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
2Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, Istanbul, Turkey

Submitted 13 January 2020, revised 3 April 2020, accepted 3 April 2020

Abstract

Despite advances in diagnosis and treatment, tuberculosis (TB) continues to be one of the essential health problems throughout the world. Turkey is considered to be endemic for TB. In this study, we analyzed the distribution of Mycobacterium species, compare the diagnostic methods, and susceptibilities to anti-tuberculosis drugs of TB isolates. The aim was to document the current status and to provide a frame of reference for future studies. In this study, 278 Mycobacterium species isolated from 7,480 patients between September 2015 and June 2019 were included. Löwenstein-Jensen medium (LJ) and MGIT 960 were used for the isolation of strains. Susceptibility to 1st-line anti-tuberculosis drugs was determined. Positivity rates in clinical samples were as follows: 1.4% for direct microscopic acid-fast bacilli (AFB) detection, 3.4% for growth on the LJ, and 3.7% for growth on MGIT-960. Two hundred thirty-three isolates were identified as Mycobacterium tuberculosis complex (MTBC) and 45 were non-tuberculous mycobacteria (NTMs). Eleven of the NTMs (24.4%) were Mycobacterium fortuitum group isolates, and eight NTMs (17.7%) were Mycobacterium abscessus complex isolates. A number of patients diagnosed with tuberculosis peaked twice between the ages of 20–31 and 60–71. A hundred and eighty-two MTBC isolates (78.1%) were susceptible to all 1st-line anti-tuberculosis drugs, while 51 isolates (21.9%) were resistant to at least one drug tested. The multidrug-resistant tuberculosis rate was 13.7% among resistant strains and 3% in all strains. The liquid cultures were better for detection of both MTBC and NTMs isolates. The data demonstrate that MTBC continues to be challenge for this country and indicates the need for continued surveillance and full-spectrum services of mycobacteriology laboratory and infectious diseases.

Key words: tuberculosis, Mycobacterium species, Mycobacterium tuberculosis complex, culture, drug resistance

Introduction

Tuberculosis (TB), as an infectious disease is caused by Mycobacterium species in humans (Miotto et al. 2018). The etiological agent of the disease is most often Mycobacterium tuberculosis (MTB), and less commonly other species in the Mycobacterium tuberculosis complex (MTBC). Mycobacterium species other than these species are classified as non-tuberculosis mycobacteria (NTMs) (Waters and Ratjen 2016). In recent years, the incidence of diseases caused by NTMs has increased due to the increasing number of immunosuppressed patients (Samli and Ilki 2016). Members of MTBC are usually transmitted to susceptible persons through airborne means such as coughing, sneezing, or speaking by patients suffering from infectious tuberculosis (Churchyard et al. 2016).

The successful establishment of an infection in the lungs is influenced by various factors such as phagocytosis of the bacilli, their intracellular multiplication, latency, and active lung infection (Banuls et al. 2015). However, there is no clear evidence that NTMs are transmitted from either person to person or from animals to people. Therefore, the transmission of NTMs is probably through individual contacts with the source of infection (Churchyard et al. 2016).

Since the treatment of Mycobacterium species depends on the correct identification of the isolate, mycobacteriological tests that are leading to the identification are crucial. Methods that include direct microscopic acid-fast bacilli detection (AFB), growth on the solid or liquid media, and biochemical tests continue to play significant roles in the identification of mycobacteria (Kurtoglu et al. 2011).
Treatment and prophylaxis of tuberculosis differ from most other bacterial infections. In general, patients should receive multiple antibiotic treatments for at least 6 to 9 months (Ozmen et al. 2017). The World Health Organization (WHO) recommends the combined use of 1st-line drugs in the initial treatment of tuberculosis. However, anti-tuberculosis drug resistance remains a significant problem. Of the primary anti-tuberculosis drugs, isolates showing at least isoniazid (INH) and rifampin (RIF) resistance are defined as Multiple Drug-Resistant Tuberculosis (MDR-TB) (WHO 2019).

In this study, we aimed to document Mycobacterium species isolated in a large metropolitan tertiary care hospital in Turkey. The laboratory procedures used to isolate the organisms were also compared. Similarly, the resistance rates to the 1st-line anti-tuberculosis drugs were determined. The ultimate aim was to compare these data with the earlier studies and to provide the frame of reference for future studies.

Experimental

Materials and Methods

Ethical approval was provided from the Ethics Committee of Medical School, Bezmialem University, Istanbul, Turkey (10.09.2019/16–302).

Our facility is a 700-bed academic hospital providing tertiary health care in Istanbul city centre, and 7,480 patients with pre-diagnosis of tuberculosis admitted to Bezmialem University Medical Faculty Hospital between September 2015 and June 2019 were included in the study. Between the dates indicated, 7,480 clinical specimens were sent to the Clinical Microbiology Laboratory with a preliminary diagnosis of tuberculosis resistant bacilli was screened by EZN staining from positive cultures. Fifty ml of phosphate buffer (0.067 M, pH=6.8) was added to each tube containing the mixture, and the tubes were centrifuged at 3,000 g for 15 minutes. The resulting precipitates were diluted with 1–2 ml of phosphate buffer (pH=6.8), and smears were prepared from these precipitates. The smears were stained by Erlich-Ziehl-Neelsen (EZN) (GBL Rose Biology Laboratory, Istanbul) method and examined microscopically under immersion oil.

Isolation of Mycobacterium species. For all the samples, both liquid and solid media are used for culture. Therefore, any isolate growing either on one of these media were used in identification studies. In some patients, multiple specimens were submitted for culture, and multiple cultures were positive for growth. In those patients, the very first isolate was used in the study.

For the liquid culture of mycobacteria, a Mycobacterium Growth Indicator Tube (BD MGIT-960, BD, Sparks, MD, USA) system was utilized, and the procedure suggested by the manufacturer was followed. Briefly, oleic acid-albumin-dextrose-catalase (OAOC) was added to the culture medium and as antimicrobial agents, polymyxin B (50 U/ml), azlocillin (10 mcg/ml), nalidixic acid (20 mcg/ml), trimethoprim antibiotic mixture (PANTA, Becton Dickinson, Sparks, MD, USA; 5.0 mcg/ml), and amphotericin B (5.0 mcg/ml) were added. 0.5 ml of the samples from decontaminated clinical mixtures was inoculated into the culture medium, and the culture bottles were incubated for six weeks at 37°C. Samples were considered negative if no growth signal was obtained by the end of this incubation period.

Simultaneous cultivation of the samples on solid media was carried out on Löwenstein-Jensen (LJ) slants (Becton Dickinson, USA). LJ tubes were evaluated daily for 42 days, and the cultures were terminated by 42nd day if no colonies observed. The presence of acid-resistant bacilli was screened by EZN staining from positive cultures.

Identification of Mycobacterium species. When MGIT-960 instrument signaled positivity, firstly, an EZN stain was performed to screen for AFB, and the positive tubes were inoculated on blood agar medium (Becton Dickinson, USA) containing 5% sheep blood, and the growth was examined to rule out a contaminating bacterial species. Samples were also inoculated onto the LJ medium for future susceptibility testing. After the growth on either solid or liquid media, the identification was performed using the MPT64 immunochromatographic test (BD MGIT Tbc Identification Test, Becton Dickinson, Sparks, USA).

In the study, M. tuberculosis isolates were identified at the ‘complex’ level, and no further identification was performed, and therefore, isolates were designated as M. tuberculosis complex (MTBC). Non-tuberculous mycobacteria (NTMs) species were identified by the
Turkish Public Health Laboratory through a commercial molecular assay (GenoType Mycobacterium CM, Hain Lifescience GmbH, Nehren, Germany).

Antimycobacterial susceptibility tests. The susceptibilities of MTBC strains to isoniazid (INH), Streptomycin (SM), Rifampicin (RIF), and Ethambutol (ETM) were investigated. For this aim, a commercial susceptibility test method (BD BACTEC MGIT-960 SIRE) was used. The concentrations of the drugs in the testing kit were as follows: SM at 1.0 μg/ml, INH at 0.1 μg/ml, RIF at 1.0 μg/ml, ETM at 5.0 μg/ml. The definitions of the multidrug resistance were that of the commercial test kit (BD BACTEC MGIT-960 SIRE).

Study design and statistical analysis. This study was conducted as a retrospective clinical study. Data analysis was performed using SPSS 20.0 software pack (SPSS Inc., USA).

Results

In 278 (3.7%) of 7,480 clinical specimens from patients with suspected tuberculosis, one type of Mycobacterium species was isolated. Of the patients with Mycobacterium species, 123 (44.2%) were female, 155 (55.8%) were male.

The type of specimens from which MTBC's were isolated was as follows: 198 respiratory tract samples (sputum, BAL and tracheal aspirate), 29 tissue specimens (lymph node biopsy, etc.), 22 sterile body fluids (pleura, peritoneum, CSF), 11 fasting gastric fluid, 11 abscesses, and seven urine samples.

In our study, the AFB positivity was 1.4% (104/7,480), and the culture positivity (LJ and/or MGIT-960) was 3.7% (278/7,480) in the clinical samples of patients with suspected tuberculosis. The culture positivity was 3.4% for LJ (254/7,480) and 3.7% for MGIT-960 (278/7,480). The contamination rate in cultures was 9% (675/7,480) for LJ and 3.7% (278/7,480) for MGIT-960. In the study, all strains identified as MBTC or NTMs were identified as the same species by both methods.

During the study period, PCR assay was performed for 24 patients' samples upon request from the ordering clinics. A commercial automated Real-time PCR assay (QIAGEN Benelux B.V. The Netherlands) was used at a reference laboratory. Out of these 24 samples, five (20.8%) were positive. PCR positive samples were also positive in liquid (MGIT-960) and solid (LJ) culture methods as studied in house, but only three were positive by AFB. One of the samples negative by PCR (19 patients) was positive by the AFB staining, and 17 out of these 19 specimens were positive on solid media (LJ); all 19 were positive in liquid (MGIT-960) culture.

Two hundred thirty-three (MTBC) and 45 (NTMs) strains were positive by liquid (MGIT-960) or solid (LJ) culture methods. NTMs distribution was as follows: 11 (24.5%) isolates were of Mycobacterium fortuitum group, eight (17.8%) of Mycobacterium abscessus complex, five (11.1%) of Mycobacterium simiae, five (11.1%) of Mycobacterium lentiflavum, four (8.9%) of Mycobacterium chelonae, four (8.9%) of Mycobacterium intracellulare, three (6.7%) of Mycobacterium gordonae, two (4.4%) of Mycobacterium avium spp., two (4.4%) of Mycobacterium kansasii, and one (2.2%) of Mycobacterium heckeshornense.

The most MTBC isolates were from respiratory specimens; 120 from sputum, 35 from BALs, and four from tracheal aspirates. The remaining MTBC were recovered from different specimen types. Of the total 45 isolated NTMs strains, 37 were isolated from sputum samples. The number and the types of specimens from which mycobacteria were isolated are presented in Table I.

In the study, the AFB was observed in 98 respiratory patient samples. We performed AFS for the patient respiratory samples as well as the growing microorganisms in the culture. However, 198 respiratory samples grew Mycobacterium species that were confirmed as acid-fast organisms by staining.

In all 104 patients, the AFB positive samples (respiratory, tissue, sterile body fluid), at least one type of Mycobacterium species was isolated on either solid or in liquid culture methods. Sixty-six (63.5%) of the AFB positive samples were obtained from male subjects, 38 (36.5%) were from females, and the mean age was 43.16 years old (females, mean age 37.55, males – 46.4 years old).

When the age distribution of the patients was examined, a bi-modal distribution was observed. The

<table>
<thead>
<tr>
<th>Number, species, AFB positivity and distribution of Mycobacterial strains according to clinical samples.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
</tr>
<tr>
<td>AFB</td>
</tr>
<tr>
<td>198</td>
</tr>
<tr>
<td>Sputum</td>
</tr>
<tr>
<td>Bronchoalveolar lavage</td>
</tr>
<tr>
<td>Tracheal aspirate</td>
</tr>
<tr>
<td>Tissue</td>
</tr>
<tr>
<td>Lymph Node Biopsy</td>
</tr>
<tr>
<td>Other Tissues</td>
</tr>
<tr>
<td>Sterile body fluid</td>
</tr>
<tr>
<td>Pleura</td>
</tr>
<tr>
<td>BOS</td>
</tr>
<tr>
<td>Peritoneum</td>
</tr>
<tr>
<td>Abscess</td>
</tr>
<tr>
<td>Fasting gastric fluid</td>
</tr>
<tr>
<td>Urine</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
The number of patients diagnosed with tuberculosis peaked twice between the ages of 20–31 and 60–71. Similarly, isolations of MTBC peaked twice in the patients of 20–31 and 60–71 age range. The isolation of NTMs species was also prominent in the 0–11 age range. The distribution of Mycobacterial strains according to age groups is presented in Fig. 1.

Of the 233 MTBC strains isolated in the study, 182 (78.1%) were susceptible to all 1st-line anti-tuberculosis drugs, while 51 isolates (21.9%) were resistant to at least one of the 1st-line anti-tuberculosis drugs tested (Table II). Total drug resistance rates for INH, SM, RIF, and ETM were 16.7% (n = 39), 14.6% (n = 34), 3% (n = 7), and 0.8% (n = 2), respectively. The highest rates of resistance were observed to the pair of INH + SM (n: 22, 9.4%), and the highest rates of resistance to three drugs were against INH + SM + RIF (n: 73%). Seven rifampin-resistant strains were also resistant to INH and SM. One of the strains was resistant to four 1st-line anti-tuberculosis drugs. In our study, the rate of MDR-TB was 13.7% (7/51) among resistant strains and 3% (7/233) among all strains isolated.

In the present study, 21.4% of MTBC isolates in 2015, 6.7% in 2016, 25.8% in 2017, 21.8% in 2017, 36.7% in 2018, and 36.7% in 2017 were tested against 1st-line anti-tuberculosis drugs. As the number of strains isolated in 2017 and 2018 increased, so did the number of resistant strains. However, this increase was not statistically significant (p < 0.05). The number and ratio of isolated resistant MTBC strains by years are presented in Table II.

The number of M. tuberculosis isolates at different age groups was presented in Fig. 1. Accordingly, the numbers of TB isolated at different age groups demonstrated a bi-model distribution peaking at third and seventh decade of life. Possible differences between various age groups were analyzed by the Chi-square test, and in both decades, the rates of M. tuberculosis isolations were significantly different.

Discussion

TB remains a major public health problem throughout the world. According to the 2018 report of the World Health Organization, it was estimated that in 2017 approximately 10 million people suffered from TB, and approximately 1.5 million people have died (WHO 2019). The determination of the presence of the etiological agent and correct identifications are important to prevent the spread of tuberculosis. Therefore, it is necessary to isolate, determine the type, and to

<table>
<thead>
<tr>
<th>Age range</th>
<th>MTC</th>
<th>NTM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–10</td>
<td>7</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>11–20</td>
<td>37</td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>21–30</td>
<td>46</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>31–40</td>
<td>34</td>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>41–50</td>
<td>10</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>51–60</td>
<td>29</td>
<td>5</td>
<td>34</td>
</tr>
<tr>
<td>61–70</td>
<td>36</td>
<td>11</td>
<td>47</td>
</tr>
<tr>
<td>71–80</td>
<td>22</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>>81</td>
<td>12</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

Table II

Number and proportion of resistant MTBC strains by years.

<table>
<thead>
<tr>
<th></th>
<th>2015 (n: 14)</th>
<th>2016 (n: 45)</th>
<th>2017 (n: 66)</th>
<th>2018 (n: 78)</th>
<th>2019 (n: 30)</th>
<th>Total (n: 233, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive to all drugs</td>
<td>11</td>
<td>42</td>
<td>49</td>
<td>61</td>
<td>19</td>
<td>182 (78.1)</td>
</tr>
<tr>
<td>INH</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>12</td>
<td>9</td>
<td>39 (16.7)</td>
</tr>
<tr>
<td>SM</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>8</td>
<td>34 (14.6)</td>
</tr>
<tr>
<td>RIF</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7 (3)</td>
</tr>
<tr>
<td>EMB</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>INH + SM</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>23 (9.9)</td>
</tr>
<tr>
<td>INH + RIF + SM (MDR-TB)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>7 (3)</td>
</tr>
</tbody>
</table>

AFB – Acid-fast bacilli; MTC – Mycobacterium tuberculosis complex; NTMs – Non-tuberculosis mycobacteria
assess the drug resistance of *Mycobacterium* species (Kurtoglu et al. 2011).

Direct microscopic examination of smears is rapid and relatively practical and, therefore, is preferred despite low rates of sensitivity in detecting bacilli (Kurtoglu et al. 2011). Patients positive on direct microscopic examination are considered to be both more contagious and exhibit a fast progression to clinical disease. Consequently, a direct microscopic examination is recommended, especially in patients with pulmonary tuberculosis (Tarylan et al. 2015).

In our study, the AFB positivity was 1.4% (104/7,480), and culture positivity (LJ and/or MGIT-960) was 3.7% (278/7,480) in patients with suspected tuberculosis. Overall, MTBC detection rate was 3.1% (233/7,480). Similarly, MTBC detection rate was between 2.1% and 11% in many studies (Baylan et al. 2002; Dundar et al. 2009; Kurtoglu et al. 2011).

Today, culture is the standard gold method for the detection of mycobacteria (Kunduracioglu et al. 2013). The World Health Organization recommends the use of liquid media for *M. tuberculosis* culture (WHO 2007). In other studies, it has been reported that the liquid medium was superior in recovering mycobacteria over solid media (Hwang et al. 2014; Kwak et al. 2017). In the current investigation, mycobacteria were detected in 3.7% (278/7,480) liquid cultures (MGIT-960) and 3.4% (254/7,480) solid (LJ) cultures.

Age distribution of TB patients is an important parameter reflecting the control of TB in the community. While the disease peaks in advanced ages in populations that implement effective TB control programs, in populations where the control programs are lax, the disease peaks at younger ages (Karatas et al. 2019). In some studies, the TB is seen mostly in advanced ages (Coffman et al. 2017); however, in an earlier Turkish study (Karatas et al. 2019), it was reported two peaks of the TB prevalence in the age group 15–24 and over 65 years old. Similarly, we noticed that the number of patients diagnosed with tuberculosis peaked twice between the ages of 20–31 and 60–71 years. These results suggest that the Turkish population is composed of mixed communities where both loose and effective TB control efforts are exerted.

The isolation rate of mycobacteria (NTMs) other than the *M. tuberculosis* complex is increasing throughout the world (Mbeha et al. 2014). To date, more than 160 NTMs species have been identified, and approximately one third is associated with diseases in humans. It has been shown to cause serious clinical consequences, especially in people with immunodeficiency (Liu et al. 2016). It has been reported that the distribution of NTMs species varies according to geographical regions and demographic characteristics of affected patients (Spaulding et al. 2017).

In our study, NTMs were isolated from 45 patients. Among NTMs, *M. fortuitum* group (11 isolates), and *M. abscessus* complex (eight isolates) were the most common mycobacteria. In the US study, Spaulding et al. (Spaulding et al. 2017) reported that other than MAC, *M. abscessus/M. chelonae*, and *M. fortuitum* were the most common isolated NTMs species. In other investigations, the frequencies among NTMs species varied significantly according to geographical regions. In a study conducted in China, Liu et al. (2016) found that more than half (59.66%) of 523 NTMs isolates were *M. avium*, and *M. intracellulare*. In this study, rapid growers such as *M. abscessus* and *M. fortuitum* were more frequent. The number MAC isolates were not as high as the others (Liu et al. 2016; Spaulding et al. 2017). Many factors could be accounted for this difference. The discrepancies in the number of people with immunodeficiency could be one factor since immunodeficiency seems to be an underlying risk factor for MAC infection. TB is a disease that should be treated with proper drug regimens to be administered to patients. The increased drug resistance complicates the treatment and impairs control of the disease. In many studies, resistance rates to commonly used 1st-line anti-tuberculosis drugs have been reported to be between 10–25% for INH, 3–16% for RIF, 0.7–19% for SM, and 0.7–10% for ETM (Karadag et al. 2004; Saral et al. 2007; Dundar et al. 2009; Aydin et al. 2011; Perincek et al. 2011). Similarly, in this report, resistances to 1st-line anti-tuberculosis drugs of INH, SM, RIF and ETM were 16.7%, 14.6%, 3%, and 0.8%, respectively. These data argue that the rate of resistance in this country follows trends not unlike those of other countries.

In many studies, it has been reported that resistance to INH and RIF are often, but resistance to other anti-tuberculosis drugs may also develop (Dheda et al. 2014; Pienar et al. 2018). However, in some studies, similar to our study, resistance to INH and SM was higher, and RIF and ETM resistances were reduced. In these studies, there were significant differences between the resistance rates by region, and the primary anti-tuberculosis drugs with the highest resistance rates were INH and SM (Kurtoglu et al. 2011; Linger et al. 2014; Sani et al. 2015; Stagg et al. 2017). It is thought that higher rates of INH and SM resistance compared to other primary anti-tuberculosis drugs may be related to the more frequent use of these drugs in both prophylaxis and treatment. Similar arguments could be put forth for this country.

The Report of the Turkish Association of Anti-TB Campaign published in 2018 indicated that in 2016, the drug susceptibility test results were surveyed for 6,037 MTC, and resistance to at least one drug was detected in 19.2% isolates. According to this report,
3.3% of the patients who underwent drug susceptibility testing were found to have MDR-TB, and the rate of multidrug resistance was 2.1% in new patients and 14.2% in previously treated patients (Saglik Bakanligi T.C. 2018). According to WHO 2018 data, MDR-TB ratio is 3.5% of new TB cases and 18% of previously treated cases globally (WHO 2019). The rates of MDR-TB in the studies made in different regions of Turkey vary between 2.2–14.7% (Saral et al. 2007; Dundar et al. 2009; Aydin et al. 2011; Kurtoglu et al. 2011). In our study, resistance to more than one drug was detected in 51 (21.88%) isolates. MDR-TB ratio was 13.7% (7/51) among resistant strains and 3% (7/233) among all strains isolated, and this rate was consistent with other studies.

Today, the number of patients with tuberculosis has increased, possibly due to changes in recent years such as social and economic turmoil, increased number of migrant patients, changes in the practices healthcare system, and drug-resistant Mycobacterium isolates. Therefore, a correct and rapid diagnosis and supervised treatment concepts should be reviewed and applied to prevent susceptible strains from gaining resistance and stopping the further spread of resistant strains. Our data indicate that NTMs species will probably be more frequently encountered in the future. Furthermore, we can speculate that drug resistance will continue to be an important problem in patients with tuberculosis.

One of the limitations of this study was that the patients and the isolates were selected from a single centre albeit it was a large tertiary care centre. This might have influenced the information gathered. However, it should also be stated that the medical centre where the study is conducted is located in the heart of the old city of Istanbul, where the immigrants are concentrated.

Data from this study indicate that the frequency of isolations of M. tuberculosis complex in the population seems to form a bimodal distribution, one in the third decade of life and the other in the 7th. Obviously, our study is not designed to address this particular demographic aspect of M. tuberculosis infection in detail. However, we judge that providing such data would be a useful addition to a study aiming to capture a current picture of Mycobacterium species in an endemic country.

In conclusion, this investigation demonstrates that tuberculosis is still a growing public health threat in Istanbul, Turkey. We do not know how much of this increase is the result of the recent high immigration rates. The drug resistance rates also seem to be on the rise. Therefore, rapid and accurate laboratory services are imperative in combatting such a growing public health menace. Our study demonstrates that the liquid culture is superior to the solid media for the recovery of Mycobacterium species and, hence, should be included in the routine mycobacteriology laboratory procedures. Collectively, these results underscore the need for the marshaling preventive public health efforts on this age-old concern.

ORCID

Bilge Sumbul https://orcid.org/0002-8768-3777
Mehmet Ziya Doymaz https://orcid.org/0000-0003-2066-0252

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

QANDEEL LARAIB1, 2, MARYAM SHAFIQUE2, 3*, NUSRAT JABEEN1, 3, SEHAR AFSHAN NAZ3, HAFIZ RUB NAWAZ4, BARKAT SOLANGI4, ARIF ZUBAIR5 and MUHAMMAD SOHAIL1

1 Department of Microbiology, University of Karachi, Karachi, Sindh, Pakistan
2 Department of Bioscience, Mohammad Ali Jinnah University, Karachi, Sindh, Pakistan
3 Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Karachi, Sindh, Pakistan
4 PCSIR, Leather Research Centre, SITE, South Avenue, Karachi, Sindh, Pakistan
5 Department of Environmental Sciences, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Karachi, Sindh, Pakistan

Submitted 1 February 2020, revised 28 March 2020, accepted 19 April 2020

Abstract

Microbial populations within the rhizosphere have been considered as prosperous repositories with respect to bioremediation aptitude. Among various environmental contaminants, effluent from textile industries holds a huge amount of noxious colored materials having high chemical oxygen demand concentrations causing ecological disturbances. The study was aimed to explore the promising mycobionite of rhizospheric soil for the degradation of azo dyes to develop an efficient system for the exclusion of toxic recalcitrants. An effluent sample from the textile industry and soil samples from the rhizospheric region of *Musa acuminata* and *Azadirachta indica* were screened for indigenous fungi to decolorize Congo red, a carcinogenic diazo dye, particularly known for its health hazards to the community. To develop a bio-treatment process, *Aspergillus terreus* QMS-1 was immobilized on pieces of *Luffa cylindrica* and exploited in stirred tank bioreactor under aerobic and optimized environment. Quantitative estimation of Congo red decolorization was carried out using UV-Visible spectrophotometer. The effects of fungal immobilization and biosorption on the native structure of *Luffa cylindrica* were evaluated using a scanning electron microscope. *A. terreus* QMS-1 can remove (92%) of the dye at 100 ppm within 24 h in the presence of 1% glucose and 1% ammonium sulphate at pH 5.0. The operation of the bioreactor in a continuous flow for 12 h with 100 ppm of Congo red dye in simulated textile effluent resulted in 97% decolorization. The stirred tank bioreactor was found to be a dynamic, well maintained, no sludge producing approach for the treatment of textile effluents by *A. terreus* QMS-1 of the significant potential for decolorization of Congo red.

Keywords: *Aspergillus terreus*, biodegradation, Congo red, immobilization, stirred tank bioreactor, textile industry

Introduction

The microbiome of the rhizospheric area is generally viewed as a treasure trove to scrutinize the indigenous microbial communities in search of natural detoxification of xenobiotics and other biotechnological perspective. It is estimated that one gram of this enriched soil comprises approximately 10 billion microorganisms, while only 1% of soil microbial population has been explored (Kakirde et al. 2010), which is widely reported for deterioration of organic polymers and pollutants.

Among numerous ventures, textile materials are directly associated with ecological angles to be unequivocally considered. With 10–15% of the share, the textile industry ranks on the top among all the dye consuming sectors utilizing 100,000 different synthetic coloring agents for various processes (Daassi et al. 2014). Discharge of dye-contaminated waste to receiving water bodies may cause immense ecological threats due to disturbances in photosynthetic activities of aquatic life, creating adverse effects on the amphibian territory (Husseiny 2008). It has been estimated that there are
more than 670 textile industries in Pakistan, and almost all are dumping their hued mechanical waste into natural water bodies without embracing the essential treatment strategies (Andleeb et al. 2010). Although the worldwide figure demonstrates 280,000 tons discharge of textile dyes and colored pigments into water bodies, per annum (Maas and Chaudhari 2005), this situation can be mulled over to comprehend the gravity of the matter. Azo dyes representing 60–70% of the commonly used dyes are characterized by the presence of one or more chromogenic azo groups. Separate chromophore (N=N, C≡C, C=O) and the auxochrome (−OH, −NH, −NR) are present in these dyes. These are intended to oppose the chemical and microbial assaults and stay stable in light and washing systems. A considerable lot of these dyes are cancer-causing and may trigger allergic reactions in human beings (Adefayo et al. 2004). Therefore, industrial wastes carrying azo dyes must be pre-treated prior to its disposal to the environment.

The physical and chemical effluent-treatment strategies, for example, adsorption, synthetic precipitation, and flocculation, are inefficient because of the prerequisite of strong foundation, high cost, and generation of secondary-sludge (McMullan et al. 2001). Given the disadvantages of chemical treatments, microbial remediation procedures have gained strong consideration during recent decades. Fungi turned out to be the most reasonable species for the treatment of textile-effluents for the evacuation of toxic colors. Numerous fungal strains either in free-living or in the immobilized state have been utilized for the decolorization of various dyes (Prachi et al. 2003; Rojek et al. 1999), and enzymatic mineralization (Wesenberg et al. 2004). There are many reactions in human beings (Adedayo et al. 2004). Bioreactors operated with modified SDB and incubated at 28°C for seven days. Fungal strains were also isolated from the sampled textile effluent by adopting a similar procedure. The fungal isolates were identified based on microscopic and colonial characteristics on SDA (Larone 1995).

Experimental

Materials and Methods

The chemicals used in the study include Congo red (Sigma-Aldrich), Sabouraud’s Dextrose Broth (Oxoid) as a fungal growth medium, Technical Agar (Oxoid), and 0.05% Tween 80 solution for the preparation of the spore suspension. Composition of Minimal Salt Media was [per l, Na/HPO₄ · 2H₂O: 7.8 g; KH₂PO₄: 6.8 g; MgSO₄ · 7H₂O: 0.2 g; NaNO₃: 0.085 g; Ca(NO₃)₂ · 4H₂O: 0.050 g; C₆H₇FeNO₄: 0.01 g; trace elements solution: 10 ml]. Simulated textile effluent (STE) was formulated as [per l, acetic acid (99.9%): 0.15 ml; (NH₄)₂Cl: 108.0 mg; KH₂PO₄: 67.0 mg; NaHCO₃: 840.0 mg; MgSO₄ · 7H₂O: 38.0 mg; CaCl₂: 21.0 mg; FeCl₃ · 6H₂O: 7.0 mg; glucose: 860 mg].

Sampling and isolation of fungi. The rhizospheric soil samples of Musa acuminata (banana plant) and Azadirachta indica (neem tree) were collected from the garden area of Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan. The textile effluent sample was collected from local textile industry in Karachi. The spread plate technique was adopted for the isolation of fungi from soil samples. Each soil sample (1 g) was serially diluted 10⁴ times in sterile distilled water (10 ml), and 0.1 ml of the diluted sample was spread on Sabouraud dextrose agar (SDA) plates followed by incubation at 28°C for seven days. Fungal strains were also isolated from the sampled textile effluent by adopting a similar procedure. The fungal isolates were identified based on microscopic and colonial characteristics on SDA (Larone 1995).

Qualitative screening of fungal isolates for bioremoval of Congo red. All the fungal isolates were screened qualitatively for removal of dye using SDA supplemented with 0.01% Congo red. Fungal discs (1 cm) were cut from the periphery of each colony, inoculated on center of the modified SDA, and incubated for seven days at 28°C. The formation of the clear transparent zone around the fungal colony indicated the degradation of Congo red by fungi.

Quantitative screening of fungal isolates for bio-removal of Congo red. Fungal isolates were screened quantitatively for removal of Congo red using SDB supplemented with 0.01% Congo red (modified SDB) through shake flask experiments. Fungal discs (1 cm) from SDA plates were cut from the periphery of each colony inoculated into the flask containing 20 ml of modified SDB and incubated at 28°C for three days on an orbital shaker at 150 rpm. The uninoculated flasks of the same medium served as controls in each case. A 4-ml sample was drawn aseptically from each flask after 72 h, filtered to separate biomass, and centrifuged at 5,000 rpm for 15 minutes. The degree of decolorization of Congo red by each fungal strain was determined in terms of percentage, measuring the absorbance of the cell-free culture supernatant (CFCS) spectrophotometrically at 498 nm (Mahbub et al. 2012).

Development of inoculum. The promising fungal strain, A. terreus QMS-1 was revived on the SDA plate
for a week at 28°C. The spores of *A. terreus* QMS-1 were harvested using a wire loop and shifted to the flask containing 50 ml of sterile distilled water with 0.05% Tween 80 (v/v). Following 30 minutes of vigorous shaking, 10 μl of the spore suspension was utilized for spore count. This inoculum was immediately used for further experimentation or stored in a refrigerator at 4°C for one week.

Optimization of physicochemical parameters for degradation of Congo red. The effect of agitation on biodegradation efficiency was studied by using SDB supplemented with 0.01% Congo red. Test flasks were inoculated with 1 ml spore suspension of *A. terreus* QMS-1, whereas uninoculated flasks served as control. One set of test and control flasks was incubated at room temperature in an orbital shaker at 100 rpm, while another set was incubated without shaking. Likewise, keeping shaking as constant, the effect of concentration of Congo red on biodegradation efficiency was investigated using 50 ml of Minimal Salt Medium (MSM) supplemented with different concentrations of Congo red (from 100–500 ppm) as described previously (Ali et al. 2008a). Similarly, the effect of carbon source in the medium on the ability of *A. terreus* QMS-1 to reduce Congo red was studied with different carbon sources like glucose, fructose, lactose, maltose, sucrose and starch in MSM containing a 100-ppm dye. When determining an optimum pH, 7.0, with 1 M NaOH keeping other parameters unchanged.

In all the experiments, each test flask was inoculated with 1 ml spore suspension of *A. terreus* QMS-1, whereas uninoculated flasks served as controls. A 4-ml sample from each flask was taken aseptically after every 12 h filtered and centrifuged at 5,000 rpm for 15 minutes, and used as cell-free culture supernatant (CFCS) to check the percent decolorization.

Immobilization of *A. terreus* QMS-1 on carrier materials. Seventeen natural and synthetic carrier materials were selected for fungal immobilization based on their stability and cost effectiveness, including polyethylene polymer, sand, gravels, natural loofah sponge, corn cob, used steel wool, orange peels, banana skins, nylon net, polyurethane foam (PUF), coconut bagasse, sugarcane bagasse, water beads, scouring pad, sandpaper, pistachio shells, and sunflower seed shells. All the supports were washed thoroughly with distilled water. Flasks containing 200 ml of SDB and 12–15 pieces of carrier material were autoclaved, inoculated with 10 ml of spore suspension of *A. terreus* QMS-1, and kept on a rotary shaker at room temperature for 15 days.

Degradation of Congo red by immobilized cells in the stirred tank bioreactor. A benchtop stirred tank bioreactor (STR) comprised of an overhead impeller, and a vessel body (2 l volume) was used. The reactor was run at room temperature, pH 5.0, with a working volume of 11 of simulated textile effluent (STE) containing 100 ppm of Congo red. The medium was inoculated separately with different carrier materials with immobilized *A. terreus* QMS-1. The hydraulic retention time was 12–120 h. The effluent samples were taken intermittently after every 12 h and analyzed for percent degradation of dye. When investigating the dye adsorption on the carrier materials, similar experiments were performed using carrier supports without immobilized cells.

Recycling of immobilized *A. terreus* QMS-1. In another experiment using the same procedure, STR was run and fed with immobilized carrier material yielding maximum decolorization of STE. The matrix with immobilized cells was checked for repeated use by reusing the previously withdrawn immobilized carrier supports from the reactor tank to fresh STE.

Quantitative estimation of decolorization. Decolorization was determined using a method described by Mahbub et al. (2012), measuring the absorbance of the CFCS at 498 nm by UV-Visible spectrophotometer. The extent of dye degradation was calculated in terms of percentage, using the following equation:

\[
\% \text{ decolorization} = \frac{\text{initial absorbance} - \text{final absorbance}}{\text{initial absorbance}} \times 100
\]

where, initial absorbance is the absorbance taken at 0 h after the inoculation, and final absorbance is the absorbance taken at after every 12–24 h.

Physico-chemical characterization of treated and untreated effluent samples under STR conditions. Treated and untreated STE samples were tested by using standard methods of Biological Oxygen Demand (APHA 5210 B), Chemical Oxygen Demand (APHA 5220 C), Total Dissolved Solids (APHA 2540 C), Total Suspended Solids (APHA 2450 D).

Scanning electron microscope analysis. The surface morphology of the best carrier material (natural loofah sponge) before and after the immobilization and biosorption was investigated using scanning electron microscope (SEM) analysis (JEOL, Model number: JSM-6380A).

Statistical analysis. All the experimental attempts were executed in triplicate, and the findings were declared as mean ± standard deviation. Experimental data were analyzed by the one-way and two-way analysis of variance (ANOVA) using GraphPad Prism (version 6.0).
Results and Discussion

Based on the environmental impact of azo dyes as well as reported bioremediation potential of fungi, the present study was aimed to isolate and screen indigenous mycobionts for developing a process of bioremediation. For this purpose, 56 fungal strains isolated from different samples of soil and textile effluent were identified by standard mycological protocols (Table I). The identified fungal strains included Alternaria sp., A. flavus, A. niger, A. terreus, Cladosporium sp., Curvularia sp., Fusarium sp., Helimenthosporium sp., Mucor sp., Penicillium sp., and Rhizopus sp.

This data also revealed that most of the fungal strains belonged to the genus Aspergillus. Amongst Aspergilli, A. flavus was found most frequent (19%) as compared to the other fungal strains isolated from different soil and textile effluent samples followed by A. niger (13.4%), A. terreus (13.4%), Mucor sp. (11.5%), Penicillium sp. (11.5%), Rhizopus sp. (9.6%), Curvularia sp. (7.69%), Cladosporium sp. (5.7%), Fusarium sp. (5.7%), Helimenthosporium sp. (5.7%), and Alternaria sp. (3.8%). Earlier, Cardoso Duarte and Costa-Ferreira (1994) have reported the abundance of Aspergillus in soil, whereas, Sohail et al. (2009) found Aspergillus as the predominant genus of the hydrolytic-enzyme producing fungi in soil.

Out of 56 fungal isolates, 42 strains showed decolorization of Congo red in the qualitative screening method. The ability of the fungi tested to remove dye was confirmed by the appearance of clear zones around the fungal colonies whereas, 14 strains were found unable to decolorize the Congo red, forming no zones of decolorization.

Table I

<table>
<thead>
<tr>
<th>Fungal isolate number</th>
<th>The fungi identified</th>
<th>Qualitative screening for Congo red dye</th>
<th>Quantitative screening for Congo red dye (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Alternaria sp QMS-1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>02</td>
<td>Alternaria sp QMS-2</td>
<td>+</td>
<td>66</td>
</tr>
<tr>
<td>03</td>
<td>Aspergillus flavus QMS-1</td>
<td>+</td>
<td>60</td>
</tr>
<tr>
<td>04</td>
<td>Aspergillus flavus QMS-2</td>
<td>+</td>
<td>55</td>
</tr>
<tr>
<td>05</td>
<td>Aspergillus flavus QMS-3</td>
<td>+</td>
<td>80</td>
</tr>
<tr>
<td>06</td>
<td>Aspergillus flavus QMS-4</td>
<td>+</td>
<td>17</td>
</tr>
<tr>
<td>07</td>
<td>Aspergillus flavus QMS-5</td>
<td>+</td>
<td>80</td>
</tr>
<tr>
<td>08</td>
<td>Aspergillus flavus QMS-6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>09</td>
<td>Aspergillus flavus QMS-7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>Aspergillus flavus QMS-8</td>
<td>+</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>Aspergillus flavus QMS-9</td>
<td>+</td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>Aspergillus flavus QMS-10</td>
<td>+</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>Aspergillus niger QMS-1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>Aspergillus niger QMS-2</td>
<td>+</td>
<td>54</td>
</tr>
<tr>
<td>15</td>
<td>Aspergillus niger QMS-3</td>
<td>+</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>Aspergillus niger QMS-4</td>
<td>+</td>
<td>53</td>
</tr>
<tr>
<td>17</td>
<td>Aspergillus niger QMS-5</td>
<td>+</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>Aspergillus niger QMS-6</td>
<td>+</td>
<td>89</td>
</tr>
<tr>
<td>19</td>
<td>Aspergillus niger QMS-7</td>
<td>+</td>
<td>54</td>
</tr>
<tr>
<td>20</td>
<td>Aspergillus terreus QMS-1</td>
<td>+</td>
<td>92</td>
</tr>
<tr>
<td>21</td>
<td>Aspergillus terreus QMS-2</td>
<td>+</td>
<td>35</td>
</tr>
<tr>
<td>22</td>
<td>Aspergillus terreus QMS-3</td>
<td>+</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>Aspergillus terreus QMS-4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>24</td>
<td>Aspergillus terreus QMS-5</td>
<td>+</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>Aspergillus terreus QMS-6</td>
<td>+</td>
<td>31</td>
</tr>
<tr>
<td>26</td>
<td>Aspergillus terreus QMS-7</td>
<td>+</td>
<td>79</td>
</tr>
<tr>
<td>27</td>
<td>Cladosporium sp QMS-1</td>
<td>+</td>
<td>65</td>
</tr>
<tr>
<td>28</td>
<td>Cladosporium sp QMS-2</td>
<td>+</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fungal isolate number</th>
<th>The fungi identified</th>
<th>Qualitative screening for Congo red dye</th>
<th>Quantitative screening for Congo red dye (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Cladosporium sp QMS-3</td>
<td>+</td>
<td>62</td>
</tr>
<tr>
<td>30</td>
<td>Curvularia sp QMS-1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>31</td>
<td>Curvularia sp QMS-2</td>
<td>+</td>
<td>56</td>
</tr>
<tr>
<td>32</td>
<td>Curvularia sp QMS-3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>33</td>
<td>Curvularia sp QMS-4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>34</td>
<td>Fusarium spQMS-1</td>
<td>+</td>
<td>43</td>
</tr>
<tr>
<td>35</td>
<td>Fusarium sp QMS-2</td>
<td>+</td>
<td>66</td>
</tr>
<tr>
<td>36</td>
<td>Fusarium sp QMS-3</td>
<td>+</td>
<td>81</td>
</tr>
<tr>
<td>37</td>
<td>Helimenthosporium sp QMS-1</td>
<td>+</td>
<td>74</td>
</tr>
<tr>
<td>38</td>
<td>Helimenthosporium sp QMS-2</td>
<td>+</td>
<td>62</td>
</tr>
<tr>
<td>39</td>
<td>Helimenthosporium sp QMS-3</td>
<td>+</td>
<td>54</td>
</tr>
<tr>
<td>40</td>
<td>Mucor sp QMS-1</td>
<td>+</td>
<td>31</td>
</tr>
<tr>
<td>41</td>
<td>Mucor sp QMS-2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>42</td>
<td>Mucor sp QMS-3</td>
<td>+</td>
<td>62</td>
</tr>
<tr>
<td>43</td>
<td>Mucor sp QMS-4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>44</td>
<td>Mucor sp QMS-5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>45</td>
<td>Mucor sp QMS-6</td>
<td>+</td>
<td>82</td>
</tr>
<tr>
<td>46</td>
<td>Penicillium sp QMS-1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>47</td>
<td>Penicillium sp QMS-2</td>
<td>+</td>
<td>43</td>
</tr>
<tr>
<td>48</td>
<td>Penicillium sp QMS-3</td>
<td>+</td>
<td>83</td>
</tr>
<tr>
<td>49</td>
<td>Penicillium sp QMS-4</td>
<td>+</td>
<td>79</td>
</tr>
<tr>
<td>50</td>
<td>Penicillium sp QMS-5</td>
<td>+</td>
<td>65</td>
</tr>
<tr>
<td>51</td>
<td>Penicillium sp QMS-6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>52</td>
<td>Rhizopus sp QMS-1</td>
<td>+</td>
<td>11</td>
</tr>
<tr>
<td>53</td>
<td>Rhizopus spQMS-2</td>
<td>+</td>
<td>25</td>
</tr>
<tr>
<td>54</td>
<td>Rhizopus sp QMS-3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>55</td>
<td>Rhizopus sp QMS-4</td>
<td>+</td>
<td>56</td>
</tr>
<tr>
<td>56</td>
<td>Rhizopus sp QMS-5</td>
<td>+</td>
<td>43</td>
</tr>
</tbody>
</table>

(+): It indicates the zone of Congo red decolorization around the fungi
(–): It indicates no zone of Congo red decolorization around the fungi
decolorization. Since the screening was mainly carried out using SDA that supports the growth of fungi and, therefore, growth-linked removal of the dye was investigated. The absence of zones around 14 strains may be linked with the inhibitory effect of the dye on the growth rate of fungi due to which degradation of dye proceeded more slowly as compared to radial growth of fungi; consequently, zone of decolorization did not appear around the fungal mycelia (Machado et al. 2006).

The findings of quantitative screening assay showed that fungal isolates namely A. flavius QMS-3, A. flavius QMS-5, A. niger QMS-6, Fusarium sp. QMS-3, Mucor sp. QMS-6, Penicillium sp. QMS-3 and A. terreus QMS-1 were found to possess excellent dye removal potential. However, amongst all the outstanding dye degraders, the strain QMS-1 of A. terreus exhibited promising potential for degradation of Congo red (92%) as compared to other fungal strains (Table I).

The dye removal ability of fungi is attributed to different phenomena such as bio-sorption/ bio-adsorption followed by bio-degradation (Knapp and Newby 1995; Fu and Viraragavan 2000; Sumathi and Manju 2000; Ali et al. 2008b). Bio-sorption is regarded as the primary process of dye removal, which enables the fungi to bind with molecules of dyes in the vicinity of fungal biomass due to electrostatic attraction between the positively charged cell walls and negatively charged dye molecules (Aksu and Tezer 2000). Bio-degradation enables the fungi to break down the dye molecule enzymatically into various products (Saranraj et al. 2010). It has been reported that some species belong to genus Aspergillus can produce enzymes like laccase, lignin peroxidases, and manganese peroxidases (Kanayama et al. 2002). In this context, it may be suggested that high electrostatic attractions due to the increased number of positively charged receptors on the cell wall of A. terreus QMS-1 were responsible for the efficient removal of Congo red in comparison with other fungal strains.

The strain A. terreus QMS-1 was found capable of exhibiting maximum degradation of Congo red (95%) under shaking (100 rpm) conditions after 24 h of cultivation, although degradation was increased to 96% when cultivation was extended to 48 h. In contrast, the cultivation of A. terreus QMS-1 under static conditions caused a decrease in decolorization, and only 62% and 63% reduction was noted in 24 h and 48 h, respectively (Fig. 1). The aeration has its recognizable effect on the growth and metabolic activities of all the obligate aerobes including fungi by expanding oxygenation and dissemination of nutrients in the medium that lead to the increased fungal mass and might be heightened expression of oxidative enzymes for the biotransformation of dye (Rani et al. 2014). However, static cultural medium causes a reduction in decolorization potential of the fungal strains by limiting oxygen just in inward layers of fungal mycelia triggering suppression of oxidative enzymes and considerable reduction in biodegradation activities.

The concentration of dye has a marked impact on the dye removal efficiency as a higher concentration may inhibit fungal growth. The strain was found capable of degrading the dye at all concentrations after 72 h; however, maximum degradation (95%) was observed with 100 ppm of dye followed by 84%, 78.6%, 70%, and 76% at 200, 300, 400, and 500 ppm, respectively (Fig. 2). Hence, it could be stated that the decolorization ability of A. terreus QMS-1 decreased with the increasing concentration of dye, which may be attributed to the toxicity of Congo red at higher concentrations as reported for some other fungi (Sponza and Isik 2005; Siddiqui et al. 2009). Nonetheless, the dye at a concentration equal to 90 ppm was being removed within 24 h regardless of the initial concentration used. In the studies by Gharbani et al. (2008), 60 ppm of Congo red was used as ‘simulated loaded textile wastewater’ implicating the importance of dye removal ability by A. terreus QMS-1 and its possible application for in situ dye removal.

The strain, A. terreus QMS-1 showed maximum degradation of Congo red in the presence of 1% glucose (95.2%) followed by maltose (90.3%), fructose (76%), sucrose (73%), lactose (66.6%), and starch (56.70%) after 24 h of cultivation under shaking conditions in the medium containing 100 ppm of Congo red (Fig. 3). These findings showed that glucose was the most suitable catabolisable carbon source for A. terreus QMS-1 that accelerated the decolorization of Congo red. Nevertheless, monosaccharides like glucose are decomposed readily as compared to the disaccharides or polysaccharides. Earlier research findings suggested that 5.0 g l⁻¹ glucose was sufficient to achieve maximum decolorization of Congo red as a further increase in
glucose concentration resulted in a decline in the rate of dye decolorization (Radha et al. 2005). Furthermore, it is also reported that polysaccharides such as starch, cellulose, and its derivatives did not support the dye decolorization process by fungi (Vaidyanathan et al. 2011).

The strain, *A. terreus* QMS-1, exhibited maximum dye removal, i.e., 92.3% and 91% in the presence of ammonium nitrate and ammonium sulfate after 24 h of cultivation, respectively. However, a noticeable decline in the removal of dye was observed, i.e., 55.2% and 39.2% in the presence of organic sources of nitrogen, i.e., peptone and yeast extract, respectively (Fig. 4). The results obtained are in agreement with those of Kashif et al. (2011) who reported the maximum decolorization of dye, Sollar Golden Yellow R by *Pleurotus ostreatus* species in the presence of ammonium sulfate that facilitated in the regeneration of NADH in the medium as electron donor, causing reduction of the dye.

A. terreus QMS-1 showed maximum mineralization of Congo red at pH 5.0, i.e., 95% and 99% after 24 h and 48 h, respectively. In contrast, an increase in pH (alkaline pH) proved to have an undesirable effect on the biodegradation potential of *A. terreus* QMS-1, and decolorization was decreased considerably to 39% (Fig. 5). In this regard, it was reported that the effective dye biotransformation/decolorization process and fungal growth usually required pH between 3 and 6 (Mansur et al. 2003; Baldrian 2004). Low pH enables the fungi to show maximum dye removal potential by providing an increased number of H\(^+\) ions located on the fungal cell wall and facilitating the uptake of negatively charged dye molecule (Won et al. 2009). It has
Removal of Congo red by *Aspergillus terreus* QMS-1

Fig. 4. Effect of nitrogen sources on biodegradation efficiency of *Aspergillus terreus* QMS-1.

![Graph showing the effect of nitrogen sources on biodegradation efficiency of *Aspergillus terreus* QMS-1.](image)

Fig. 5. Effect of pH on biodegradation efficiency of *Aspergillus terreus* QMS-1.

![Graph showing the effect of pH on biodegradation efficiency of *Aspergillus terreus* QMS-1.](image)

also been observed and suggested that a further increase in pH greater than 5.0 leads to the disintegration of fungal mycelia and reduction in fungal growth, therefore, the dye removal process decreases.

Using the STR system, the effect of various natural and synthetic immobilization support matrices on Congo red removal efficiency was investigated. *A. terreus* QMS-1 was immobilized over 17 different support matrices to select the one best for decolorization/degradation of dye. The selection of support matrices was based on high porosity, inert nature, easy availability, and low cost. It was found that *A. terreus* QMS-1 immobilized over natural loofah sponge showed maximum removal of Congo red, i.e., 97%, followed by polyethylene polymer (92%), sugarcane bagasse (86.3%), nylon net (83%), used steel wool (83%), orange peels (81%), scouring pad (80%), sand (77.3%), coconut bagasse (77.3%), polyurethane foam (74.87%), banana skins (67.8%), water beads (63%), corn cob (62%), sand paper (62%), pistachio shells (65%), sunflower seed shells (55.5%) and gravels (48.9%) at a hydraulic retention time of 12 h under STR conditions. However, complete decolorization, i.e., 100% removal of Congo red dye, was achieved at a hydraulic retention time of 48 h by employing *A. terreus* QMS-1 immobilized over natural loofah sponge (Fig. 6). The results of removal of Congo red dye (100 mg/l) under STR conditions revealed the superiority of natural loofah sponge as an immobilization support matrix for *A. terreus* QMS-1, as compared to the other immobilization supports (Fig. 7), in terms of decolorization of dye and reduction in the treatment time. Natural loofah sponge is derived from the vegetable fibre of *Luffa cylindrica* or *Luffa aegyptiaca*. The spatial structure of natural loofah sponge is formed
by the parallel and antiparallel arrangement of fibres, thereby creating open and free spaces for the exchange of nutrients. Moreover, it provides enough space for the diffusion of oxygen and contains sites for the physical confinement or localization of fungal hyphae. Other advantages of this carrier include its high porosity (85–95%) with simultaneous low density (0.018–0.05 g/cm3) and mechanical strength. Previously, natural loofah sponge has been applied as a Microalgal-luffa sponge immobilized discs for biosorption of nickel (Akhtar et al. 2003). Furthermore, due to the robustness, stability, and regenerating capability of this matrix, the immobilized culture can be recycled for at least seven times. Besides, loofah sponge is also used as a nutrient source for white-rot fungi providing carbon and energy contributing towards long-term bioremediation (Mazmanci et al. 2005).

The decolorization of Congo red dye in simulated textile effluent was also investigated in the bioreactor with entire pieces of natural loofah sponge without fungal cells to determine the physical adsorption capacity of the support matrix. It was found that removal of

![Fig. 6. Effect of different immobilization supports on biodegradation efficiency of Aspergillus terreus QMS-1 in the stirred tank bioreactor.](image)

![Fig. 7. Luffa cylindrica (a) before and (b) after with immobilization of Aspergillus terreus QMS-1.](image)
Congo red from simulated textile effluent by the intact pieces of natural loofah sponge was not significant, and hence the dye removal was not because of adsorption by the natural loofah sponge.

These experimental findings suggested that natural loofah sponge possessed all the required characteristics to be utilized as an ideal bio-support. Therefore, it was further subjected to SEM analysis at various magnifications (×20 and ×50) to observe the morphological changes before and after the immobilization of *A. terreus* QMS-1, and was later applied in STR system. SEM micrographs of intact natural loofah sponge indicated porous, hollow, and rough topography with a greater number of interstitial voids and inner channels (Fig. 8a). This was converted into a compact, tighter, and smooth material as fungal mycelia covered interstitial voids, inner channels, and superficial surfaces (Fig. 8b). The channeled structure has an identifiable effect as it allows respiratory gases and essential elements effectively through fungal mycelial mass, increasing metabolic efficiency of the strain. Therefore, immobilized fungi are viewed as more proficiently than suspended mycelia in many frameworks (Villena et al. 2010).

Effect of repeated use of *A. terreus* QMS-1 immobilized over the most promising carrier matrix (natural loofah sponge) on decolorization of Congo red dye in STE was also evaluated to make the use of bioreactor more affordable and economical. Moreover, it was found that loofah sponge was an extremely stable carrier and can be reused for at least eight times with the same rate of decolorization, i.e., 97% (12 h). However, further recycling for more than eight cycles resulted in a gradual reduction in the rate of decolorization by the immobilized *A. terreus* QMS-1. In this regard, several factors including higher molecular mass, structural complexity, a saturation of receptors on fungal cells, and the presence of inhibitory functional groups may cause desorption or removal of dye from fungal cells, especially at the long contact time, thereby declining the recyclability of immobilized fungus and affecting the process of decolorization (Ali and Muhammad 2008b).

Although microbes can remove color-producing recalcitrant compounds by a wide variety of mechanisms, it has also been indicated by several research studies that detoxification of reactive group of azo dyes leads to the generation of robust and even more lethal intermediates during biodegradation processes (Gottlieb et al. 2003). Therefore, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Dissolved Solids (TDS), and Total Suspended Solids (TSS) analysis of the dye-containing effluent samples (before and after treatment under STR) were carried out to evaluate and confirm the extent of degradation of Congo red dye by *A. terreus* QMS-1 through

![Fig. 8. SEM micrographs of Luffa cylindrica, a) before and b) after immobilization of Aspergillus terreus QMS-1.](image-url)
quantifying and comparing their organic loads. In case of STR treatment system, the BOD, COD, TDS and TSS values decreased from 1,260, 2,657, 3,000, and 500 mg/l to 300, 1,180, 2,160, and 160 mg/l at HRT of 12 h respectively, showing the acceptable values according to National Environmental Quality Standards (NEQS) range. The drastic reduction of BOD, COD, TDS, and TSS values suggests the significance of STR treatment technology, even though it is crucially imperative to explore final residues of dye mineralization to render this system as an ecologically perfect and economical alternative to conventional treatment methods.

Conclusions

This research study proclaimed the excellent attempt of immobilized A. terreus QMS-1 under STR conditions for the reduction of Congo red, i.e., 97% decolorization within 12 h, reinforcing its potential for a safer environment by reducing the hazardous effects of textile dyes and proposing this technology as an adaptable, proficient and sustainable way for dealing with textile effluents.

Acknowledgments

The authors acknowledge Dean Faculty science research grant, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan, for providing financial support to conduct this study.

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

Removal of Congo red by *Aspergillus terreus* QMS-1

Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity

DI ZHANG*, CHUANG LI*, RUIRUI SHI, FENGCHUN ZHAO* and ZHENGYOU YANG*

Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, China

Submitted 14 February 2020, revised 5 April 2020, accepted 21 April 2020

Abstract

Oxidative stress-induced series of related degenerative diseases have received widespread attention. To screen new lactic acid bacteria (LAB) strains to resist oxidative stress, traditional Chinese fermented vegetables were used as a resource library to screen of LAB. The *Lactobacillus fermentum* JX306 strain, which showed high scavenging activity of DPPH free radical and hydrogen radical, and a strong lipid peroxidation inhibition rate in vitro was selected. *L. fermentum* JX306 was also examined for its antioxidant capacity in D-galactose-induced aging mice. The results showed that *L. fermentum* JX306 could significantly decrease malondialdehyde (MDA) levels and improve the activity of glutathione peroxidase (GSH-Px), and total antioxidant capacity (TOC) in the serum, kidney, and liver. Meanwhile, the strain could remarkably upregulate the transcriptional level of the antioxidant-related enzyme genes, such as peroxiredoxin1 (Prdx1), glutathione reductase (Gsr), glutathione peroxidase (Gpx1), and thioredoxin reductase (TR3) encoding genes in the liver. Besides, histopathological observation proves that this probiotic strain could effectively inhibit oxidative damage to the liver and kidney in aging mice. Therefore, this unique antioxidant strain may have a high application value in the functional food industry and medicine industry.

Key words: lactic acid bacteria, antioxidant activity, *Lactobacillus fermentum*, traditional Chinese fermented vegetables, D-galactose-induced aging mice

Introduction

Oxidative stress refers to an imbalance, which is caused by high levels of reactive oxygen species (ROS) and low levels of antioxidant activity (Preiser 2012). The excessive ROS can damage enzymes, fatty acids, proteins, nucleic acids, and other physiological substances of cells, which leads to structure and function disorders (Dizdaroglu et al. 1992; Wu et al. 2014). The oxidative stress can cause various diseases, including amyotrophic lateral sclerosis, asthma, allergies, and diabetes as well as further accelerate aging (Nyström 2003; Kurien et al. 2006; Lin and Beal 2006). When the entire antioxidant defense system cannot protect all biological macromolecules from the effects of oxidative damage, it is necessary to increase the defense capacity of the antioxidant system in order to protect human health (Wang et al. 2017). In recent years, LAB have received increasing attention because of their long history of safe use and their potential health benefits, such as improving stool consistency, immune modulation, and antagonism towards the pathogens. Another attractive feature of the LAB is their antioxidant capacity. Increasing experimental evidence indicates that probiotic LAB exerts beneficial antioxidative effects by ROS scavenging, chelating transition metal ions, and activating certain enzyme activities. Therefore, using LAB to scavenge the excess of free radicals, inhibit oxidative damage, and prevent the related restrictive diseases can be a potential treatment option (Mishra et al. 2015; Wang et al. 2017; Lin et al. 2018a).

The most studied probiotics are *Lactobacillus* and *Bifidobacterium*. Compared with other probiotic strains such as *L. rhamnosus*, *L. casei*, and *L. plantarum*, the

* These authors contributed equally to this work.

* Corresponding authors: Z.Y. Yang, Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, China; e-mail: zhyou21cn@sdau.edu.cn

F.C. Zhao, Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, China; e-mail: zhaofengchun@126.com

© 2020 Di Zhang et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/).
study on *L. fermentum* is one of the less-studied potential probiotic strain and still in a developing stage (Lin et al. 2017). *L. fermentum* has beneficial effects on the cholesterol level, effectiveness of the immune response, and reduction of the gastrointestinal and upper respiratory tract infections in infants (Wang et al. 2009; Pan et al. 2011; Maldonado et al. 2012; Russo et al. 2015). It is worth noting that the antioxidant properties of *L. fermentum* have received extensive attention. Using the oxygen radical absorbance capacity (ORAC) method, a significant *in vitro* antioxidant capacity of *L. fermentum* LF31 has been shown (Persichetti et al. 2014). *L. fermentum* ME-3, as a well-known anti-oxidant probiotic strain, inhibited oxidative damage to the body and reduced the risk of intestinal infection in patients (Mikelsaar and Zilmer 2009). *L. fermentum* Suo could eliminate the chain reaction of oxygen free radicals and lipid peroxidation as well as inhibit HCl/ethanol-induced oxidative damage in the gastric tissue (Suo et al. 2016). *L. fermentum* MTCC589 could improve antioxidant enzyme activity, resist the reinfection of *Escherichia coli*, and reduce the immune aging of mice (Sharma et al. 2014).

In this study, 481 of LAB strains from Chinese traditional fermented vegetables were screened to isolate the probiotic strains with antioxidant activity. After the characterization of the antioxidant properties of the LAB strains *in vitro*, *L. fermentum* strain JX306 with high antioxidant activity was selected, and these properties were further studied *in vivo* using a D-galactose-induced aging mice model.

Experimental

Materials and Methods

Bacterial strains and culture conditions. A total of 481 isolates (Table SI) were used in this study, which were obtained from 35 Chinese traditional fermented vegetable samples collected from different areas of China. They were identified using the methods described earlier (Wu et al. 2009). All the strains were stored at −80°C in MRS broth with 20% glycerol. For all subsequent experiments, the strains were incubated in MRS broth at 37°C for 18 h. The intact cells were obtained by centrifugation (8,000 g for 10 min at 4°C) and then washed with sterilized isotonic saline (0.85%) three times. The final concentration of intact cells was adjusted to 4.0 × 10⁶ CFU/ml.

In vitro determination of antioxidant activity of LAB strains. Primary screening of LAB with antioxidant capacity. The scavenging capacity against DPPH of 481 LAB strains was evaluated based on the method described by Wang et al. (2017) with some modification. Briefly, 1.0 ml of LAB suspension was added to 2.0 ml of DPPH- solution (0.2 mM in ethanolic) and shaken well before incubation for 30 min in the dark at room temperature. In the control group, LAB suspension was replaced by sterile saline, and the DPPH free radical solution was replaced with ethanol solution in the blank group. After centrifugation at 8,000 g for 10 min, the absorbance of the supernatants was measured at 517 nm. The specific method for measuring DPPH-free radical scavenging capacity was as follows:

\[\text{Scavenging activity} (\%) = [1 - (A_{\text{sample}} - A_{\text{blank}})/A_{\text{control}}] \times 100 \]

Hydroxyl radical scavenging. The method for the measurement of hydroxyl radical scavenging ability of the preliminarily screened LAB strains was based on Lin’s test method (Lin et al. 2018a) with some modifications. Briefly, 1 ml of the LAB suspension was added to 2.5 ml mixture containing 0.5 ml of O-phenanthroline (2.5 mM), 1.0 ml of PBS (10 mM, pH = 7.4), 0.5 ml of FeSO₄ (2.5 mM), and 0.5 ml of H₂O₂ (20 mM). The mixture was shaken well and incubated in a water bath at 37°C for 1.5 h. The control group used sterile saline instead of LAB suspension. After centrifugation at 8,000 g for 10 minutes, the absorbance of the supernatant was measured at 510 nm. The specific details of the measurement of hydroxyl radical scavenging ability of LAB cells were as follows:

\[\text{Scavenging activity} (\%) = [A_{\text{blank}} - A_{\text{control}}]/(A_{\text{blank}} - A_{\text{sample}}) \times 100 \]

Lipid peroxidation inhibition rate. The lipid peroxidation inhibition rate of the primary screening LAB strains was determined based on a Kullisaar’s test method (Kullisaar et al. 2003) with some modifications. Briefly, 1.0 ml of the LAB suspension was added to a solution containing 0.5 ml of deionized water, 0.2 ml of FeSO₄ (0.01%, w/v), 0.02 ml of ascorbic acid (0.01%, w/v), and 1.0 ml of linoleic acid emulsion (20 ml linoleic acid emulsion includes 0.2 ml of tween 20, 0.1 ml of linoleic acid, and 19.7 ml of sterile saline). The mixture was incubated at 37°C for 12 h. Then, 0.2 ml of 4% TCA, 2 ml of thiobarbituric acid (TBA, 0.8%), and 0.2 ml of butylated hydroxytoluene (BHT, 0.4%) were added to the mixture and shaken well. After reaction in a heated water bath at 100°C for 30 min, the solution was rapidly cooled by using an ice bath and extracted by 2 ml butyl alcohol. The supernatant was obtained by centrifugation at 8,000 g for 10 min, and the absorbance at 532 nm was determined as A_{sample}. The absorbance of the mixture without the LAB cells was determined as A_{control}. The specific calculation method of the lipid peroxidation inhibition rate was as follows:

\[\text{Lipid peroxidation inhibition capacity (\%)} = [(A_{\text{control}} - A_{\text{sample}})/A_{\text{control}}] \times 100 \]

Tolerance of the selected strains to simulated bile. The tolerance of the six LAB strains to simulated bile
was evaluated based on the test method described by Argyri et al. (2013). LAB cells (4 x 10^8 CFU/ml) were collected and resuspended into 1 ml simulated bile (a sterile saline solution containing 1 mg/ml pancreatic enzymes, and 0.5% (w/v) of bile salt. The LAB cells were incubated at 37°C for 1 h, and then the samples were diluted and plated on MRS solid plates. After 48 h of incubation at 37°C, the survival rate (SR) of cells was determined by a plate count method. The survival rate was determined as follows:

\[
SR(\%) = \frac{S_2}{S_1} \times 100
\]

where, \(S_1 \) is the initial number of cells, \(S_2 \) is the final number of cells.

Tolerance of the selected strains to simulated gastric and intestinal fluids. Tolerance of the selected six strains to simulated gastric and intestinal fluids was tested based on the method described by Huang and Adams (2004). Briefly, LAB cells (4 x 10^8 CFU/ml) were collected and resuspended into 1 ml of the simulated gastric fluid or intestinal fluid. The simulated gastric and intestinal fluids were made in the same way as in the previous study (Huang and Adams 2004). LAB strains in the simulated gastric fluid were incubated at 37°C for 3 h, and LAB strains in the simulated intestinal fluid were incubated at 37°C for 24 h. Then, LAB strains were diluted and plated on MRS plates. After 48 h of incubation at 37°C respectively, the survival rate was determined as shown above for the SR(%) equation.

Assay antioxidant activity of L. fermentum JX306 in vivo using the D-galactose-induced aging mice model. Animal experiment designs. Sixty male KM mice (20 ± 2 g), purchased from Jinan Pengyu Animal Experimental Center (Jinan, China), were randomly divided into six groups after one-week adaptation: the normal control group (NC), model control group (MC), positive control group (PC), low-dose group (LD), middle-dose group (MD), and high-dose group (HD). The treatments of each group were shown in Table I. After feeding for eight weeks, mice were sacrificed. The specific methods and details of animal experiments have been approved by the Ethics Committee of Shandong Agriculture University and comply with relevant guidelines in the European Union (Directive 2010/63/EU).

Determination of serum, liver, and kidney antioxidative parameters. Blood samples of each group were obtained by moving mice eyeballs after 12 h of the final administration. Subsequently, the samples were centrifuged (8,000 g, 10 min at 4°C) to obtain the serum samples. The serum samples were stored at –80°C for further analysis. The liver and kidney samples of each mouse (0.1 g) were added to 0.9 ml of sterile saline and fully homogenized. After centrifugation at 8,000 g for 10 min at 4°C, the supernatants of each group were gathered for further analysis. Four oxidative stress products, including malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) were determined in the serum, liver, and kidney samples according to the details in the kit (Nanjing Jiancheng Bioengineering Institute, China).

Changes of the antioxidant-related genes’ transcription in the liver. The total RNA of liver tissue in each group was extracted according to the specific details in the RNAiso Plus (Takara, China). The purity and quality of total RNA were determined by OD260/OD280 and agar gel electrophoresis. Then, the reversed transcription to synthesize cDNA was performed according to the details in the PrimeScriptII First Strand cDNA Synthesis Kit (Takara, China), and considering the needs of the next experiment, the cDNA was placed at –20°C. The 7500 Fast Real-Time PCR System (ABI, USA) and SYBR Green PCR Kit (TransGen, China) were used for operating the RT-PCR. The PCR procedure contained a denaturation step at 94°C for 10 min, followed by 40 cycles of denaturation at 94°C for 5 s, annealing, and extension at 60°C for 30 s.

The primers (Table SII) for the amplification of the genes encoding for peroxiredoxin-1 (Prdx1), glutathione peroxidase (Gsr), glutathione peroxidase (Gpx), and thioredoxin reductase (TR3), used for quantitative-PCR, were as described previously (Zhao et al. 2018). The gene encoding for β-actin was considered as a reference gene. The transcriptional levels of

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
<th>Experimental treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oral administration</td>
</tr>
<tr>
<td>NC</td>
<td>10</td>
<td>Normal saline (0.85%, 20 ml/kg BW)</td>
</tr>
<tr>
<td>MC</td>
<td>10</td>
<td>Normal saline (0.85%, 20 ml/kg BW)</td>
</tr>
<tr>
<td>PC</td>
<td>10</td>
<td>Vitamin C (30 g/l, 200 mg/kg BW)</td>
</tr>
<tr>
<td>LD</td>
<td>10</td>
<td>L. fermentum JX306 (10^8 CFU/day)</td>
</tr>
<tr>
<td>MD</td>
<td>10</td>
<td>L. fermentum JX306 (10^8 CFU/day)</td>
</tr>
<tr>
<td>HD</td>
<td>10</td>
<td>L. fermentum JX306 (10^8 CFU/day)</td>
</tr>
</tbody>
</table>
four genes encoding antioxidant enzymes Prdx1, Gsr, Gpx, and TR3 in the liver were evaluated according to the standard curve of quantitative analysis. The specific result of the relative expression of the gene is expressed by the formula $2^{-\Delta\Delta C_{T}}$.

Histological analysis. Liver and kidney tissues were fixed with 10% formalin for 24 h and then embedded in conventional paraffin. For each paraffin block, thin sections (4–5 μm thickness) were gained, and then HE stained, and professional pathologists were invited to interpret the section results. Subsequently, these sections were used for light microscopic evaluation.

Statistical analysis. The software SPSS 20 was used to perform the statistical evaluation. Mean ± standard deviations were used to interpret the data. One-way ANOVA was operated to analyze the data. Significant deviations were used to interpret the data. One-way ANOVA was operated to analyze the data. Significant deviations were used to interpret the data.

Results

Screening of antioxidant LAB strains. In this study, 481 strains isolated from Chinese traditional fermented vegetable samples were firstly screened for their DPPH free radical scavenging ability. As shown in Table II, six LAB strains were selected based on their high DPPH radical scavenging capacity. The strongest scavenging effects on the DPPH radical scavenging capacity were found for *L. fermentum* 306 (37.29%).

The antioxidant activity of the strains selected was further evaluated by HO· scavenging ability, and the lipid peroxidation inhibition rate. As shown in Table II, among the strains selected, *L. fermentum* JX306 exhibited the highest HO· scavenging capability, and the strongest lipid peroxidation inhibition activity with the HO· scavenging rate of 37.29%, and lipid peroxidation inhibition rate of 37.9%.

Tolerance to bile salts and the simulated gastric and intestinal fluids. Prerequisites for the application of LAB strains for commercial use include resistance to bile salt-mediated growth inhibition (Jamalifar et al. 2010), and their survival in an acidic, alkaline gastrointestinal environment. Oral lactic acid bacteria must overcome these adverse conditions to live in the intestines and, therefore, play a beneficial health effect. Thus, the tolerance of the strains selected for simulated bile, gastric fluid, and intestinal fluid was determined, as shown in Table III, *L. fermentum* JX306 showed the highest survival rates after incubation in these three simulated solutions. The survival rates were 78.28% for simulated bile, 53.05% for simulated gastric fluid, and 42.07% for simulated intestinal fluid, respectively.

<table>
<thead>
<tr>
<th>Strains</th>
<th>DPPH scavenging rate (%)</th>
<th>Hydrogen radicals scavenging rate (%)</th>
<th>Inhibition rate of lipid peroxidation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. fermentum JX306</td>
<td>37.29 ± 1.75a</td>
<td>37.90 ± 0.29a</td>
<td>28.14 ± 2.97a</td>
</tr>
<tr>
<td>L. fermentum GZ394</td>
<td>34.92 ± 3.57a</td>
<td>35.02 ± 1.70a</td>
<td>23.89 ± 1.60a</td>
</tr>
<tr>
<td>L. plantarum SC34</td>
<td>23.09 ± 4.00c</td>
<td>34.50 ± 1.44c</td>
<td>12.69 ± 0.23c</td>
</tr>
<tr>
<td>L. plantarum GZ328</td>
<td>27.83 ± 2.25c</td>
<td>29.21 ± 1.60c</td>
<td>20.85 ± 2.07c</td>
</tr>
<tr>
<td>Pediococcus pentosaceus GZ430</td>
<td>16.22 ± 0.89c</td>
<td>23.32 ± 1.62c</td>
<td>18.01 ± 2.09c</td>
</tr>
<tr>
<td>Leuconostoc mesenteroides YN295</td>
<td>15.26 ± 0.67c</td>
<td>34.31 ± 1.18c</td>
<td>14.43 ± 1.29c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strains</th>
<th>Survival rate (%) in simulated bile</th>
<th>Survival rate (%) in simulated gastric fluid</th>
<th>Survival rate (%) in simulated intestinal fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. fermentum JX306</td>
<td>78.28 ± 0.18a</td>
<td>53.05 ± 1.75a</td>
<td>42.07 ± 6.52a</td>
</tr>
<tr>
<td>L. fermentum GZ394</td>
<td>74.61 ± 4.67a</td>
<td>30.57 ± 3.68b</td>
<td>27.26 ± 4.95b</td>
</tr>
<tr>
<td>L. plantarum SC34</td>
<td>65.09 ± 6.33b</td>
<td>5.34 ± 1.92c</td>
<td>12.23 ± 1.85c</td>
</tr>
<tr>
<td>L. plantarum GZ328</td>
<td>74.48 ± 1.79c</td>
<td>1.51 ± 0.22c</td>
<td>9.75 ± 0.45c</td>
</tr>
<tr>
<td>Pediococcus pentosaceus GZ430</td>
<td>22.99 ± 3.12d</td>
<td>3.62 ± 1.11c</td>
<td>15.26 ± 2.34c</td>
</tr>
<tr>
<td>Leuconostoc mesenteroides YN295</td>
<td>33.89 ± 0.96c</td>
<td>5.34 ± 0.79c</td>
<td>17.28 ± 0.56c</td>
</tr>
</tbody>
</table>

Table II
The selected LAB strains with high antioxidant activity.

Table III
The survival rate (%) of LAB in simulated bile, gastric fluid, and intestinal fluid.

An average value within a list with different superscript alphabets differ ($p < 0.05$)

Data are shown as means ± SD from triplicate results

Average value within a list with different superscript alphabets differ ($p < 0.05$)

Data are shown as means ± SD from triplicate results
Therefore, based on the antioxidant activities and the survival responses of the strains selected to the simulated conditions in the human gastrointestinal tract, the strain of *L. fermentum* JX306 was finally selected for *in vivo* assay to examine their antioxidant profiles in the D-galactose-induced aging mice model.

Antioxidant activities of *L. fermentum* JX306 in the D-galactose-induced aging mice model. High levels of ROS lead to oxidative damage. D-galactose has low toxicity and slow action and could stimulate the body to produce a large number of free radicals. It has been used as a mature model to simulate the body’s oxidative stress process. In this study, the antioxidant activities of *L. fermentum* JX306 were verified *in vivo* in the D-galactose-caused oxidative damaged mice. After intraperitoneal injection of D-galactose for eight weeks, compared with the NC group, the MC group exhibited obvious signs of aging. The skin color of the mice was dull, the skin elasticity was poor, and worse emotions such as irritability and lethargy appeared. It is worth noting that no mouse death occurred during the entire test. The weight of the mice was analyzed in detail without statistical differences in all groups (*p* > 0.05) (data not shown).

The level of antioxidant products in the D-galactose-induced aging mice liver. Compared with the NC group, the levels of GSH-Px and T-AOC antioxidant products in the MC group showed a significant downward trend, while the activity of MDA showed an upward trend. (*p* < 0.05, Fig. 1). Oral treatment with *L. fermentum* JX306 strain could change significantly adverse effects, which were caused by the three oxidative stress products (Fig. 1). The MDA levels decreased with the increase of LAB dose, and it reached 9.43 nmol/mg protein, 8.19 nmol/mg protein, and 7.70 nmol/mg protein in the LD, MD, and HD group, respectively, which were 31.01%, 40.03%, and 43.65% lower than the results in MC group. It should be noted that the MDA levels in a high-dose group were significantly decreased compared to the normal control group, and comparable to the PC group. In the LAB groups, the GSH-Px and T-AOC levels increased with the increase of LAB dose, and it reached 451.80 U/mgprot, and 1057.13 μmol/gprot in a HD group respectively, which were 48.40% and 57.13% higher than the results in MC group. As shown in Fig. 1, the hepatic SOD activity was not significantly influenced by D-gal, vitamin C or *L. fermentum* JX306 strain application.

The level of antioxidant products in the D-galactose-induced aging mice kidney. When compared with the NC group, the injection of D-galactose to mice from the MC group generated a lot of free radicals. The

![Fig. 1. Effect of *L. fermentum* JX306 on GSH-Px, SOD, T-AOC activities, and MDA concentration in the liver of mice with oxidative stress induced by D-galactose. (A) MDA; (B) GSH-Px; (C) SOD; (D) T-AOC. All data are presented as mean ± SD (n = 3). Bars with different letters were significantly different (*p* < 0.05).](image-url)
excessive radicals hurt all biological macromolecules and cause oxidative damage to tissues and cells; thus, they led to the decrease of GSH-Px and T-AOC activities and the increase of MDA levels \((p < 0.05, \text{Fig. 2})\). The administration of \textit{L. fermentum} JX306 could effectively reverse the adverse changes, which were caused by D-galactose \((p < 0.05)\). The T-AOC levels boosted with the increase of the LAB dose and reached 87.80 μmol/g protein, 129.80 μmol/g protein, and 202.27 μmol/g protein in the LD, MD, and HD group respectively. These levels were 53.12%, 126.34%, and 252.76% higher than the results demonstrated for the MC group. It is worth mentioning that the activity of GSH-Px with high-dose of \textit{L. fermentum} JX306 was higher, and there was no statistically significant difference when compared to the NC group. This result showed that the high-dose of \textit{L. fermentum} JX306 had the most significant effect in inhibiting oxidative damage, which was caused by excessive free radicals. The MDA levels decreased with the increase of the LAB dose, and reached 8.64 nmol/mg protein, 7.62 nmol/mg protein, and 3.91 nmol/mg protein in the LD, MD, and HD group, respectively. These levels were 7.92%, 18.79%, and 58.32% lower when compared to the MC group. It should be noted that the MDA levels in the high-dose group were significantly decreased in comparison to the normal control group and PC group. The administration of \textit{L. fermentum} JX306 did not significantly affect SOD activity in the kidney when compared to that of the MC group.

Effect of antioxidant products in the serum from the D-galactose-induced aging mice. As shown in Fig. 3, a significant decrease of T-AOC activities and an increase of MDA levels were observed in the serum of the D-galactose induced aging mice’s control group when compared to those of the normal control group. \textit{L. fermentum} JX306 administration reversed the changes in T-AOC and MDA levels. The T-AOC levels enlarged with the increase of the LAB dose and reached 641.25 μmol/g protein, 772.53 μmol/g protein, and 793.53 μmol/g protein in the LD, MD, and HD group, respectively. These values were 4.45%, 25.83%, and 29.25% higher than the results in the MC group. The MDA levels decreased with the increase of LAB dose, and reached 1.92 nmol/mg protein in the HD group, and were 35.75%, 27.64%, and 20.44% lower than the results in the MC group, NC, and PC group, respectively. The GSH-Px levels in sera of \textit{L. fermentum} JX306 administration mice showed only a slight increase. The serum SOD activities were not significantly influenced by D-galactose, vitamin C or \textit{L. fermentum} JX306.

Effect of \textit{L. fermentum} JX306 on the relative gene expression in the liver of D-galactose-induced aging mice. In order to further explore the related antioxidant mechanism of \textit{L. fermentum} JX306 at the gene level, we have completed a quantitative analysis of the relative expression of the key antioxidant genes in the thioredoxin system (TRX) and the glutathione system (GSH). As shown in Fig. 4, when compared with the normal group,
Fig. 3. Effect of *L. fermentum* JX306 on GSH-Px, SOD, T-AOC activities and MDA concentration in the serum of mice with oxidative stress induced by D-galactose. (A) MDA; (B) GSH-Px; (C) SOD; (D) T-AOC. All data are presented as mean ± SD (n = 3). Bars with different letters were significantly different (p < 0.05).

Fig. 4. Effect of *L. fermentum* JX306 on the expression of the genes encoding for peroxiredoxin-1 (Prdx1), glutathione peroxidase (Gsr), glutathione peroxidase (Gpx), and thioredoxin reductase (TR3) in the liver of D-galactose induced aging mice. (A) Thioredoxin reductase mRNA; (B) Peroxiredoxin1 mRNA; (C) Glutathione reductase mRNA; (D) Glutathione peroxidase mRNA. All data are presented as mean ± SD (n = 3). Bars with different letters were significantly different (p < 0.05).
D-galactose treatment significantly reduced the relative gene expression levels of Prdx1, Gsr, Gpx, and TR3 \((p < 0.05) \). However, it is worth noting that this phenomenon was significantly alleviated by \textit{L. fermentum} JX306 intervention, and the relative gene expression levels of Prdx1, Gsr, Gpx, and TR3 were all significantly increased. Therefore, oral treatment with \textit{L. fermentum} JX306 strain could significantly increase the transcription level of antioxidant genes in the liver and could play a key role in inhibiting oxidative damage.

Histopathological changes in mice livers and kidneys. As shown in Fig. 5, the HE sections showed that \textit{L. fermentum} JX306 had an inhibitory effect on the oxidative damage caused by D-galactose in liver and kidney tissues. In the NC group, cells in the liver indicated large and round cell nucleus, nucleoli conspicuous, and entire cytoplasm (Fig. 5A). The renal tubules and glomerulus of the kidney showed an intact morphological structure (Fig. 5B). While for the MC group, the histological picture of the kidney indicated that glo-
meruli were severely damaged, as did tubulointerstitial lesions. A loss of brush borders and vacuolation of renal tubules were also observed. A histological picture of the liver showed necrotic spots, edema degeneration, and vacuoles degeneration. However, analysis of the three groups treated with *L. fermentum* JX306 indicated that D-galactose-induced pathologic changes could be alleviated with a dose-related effect. As especially observed in the HD group, the severe oxidative damages caused by D-galactose were strikingly improved to the level of the normal group.

Discussion

In recent years, due to long history of safe use and potential therapeutic benefits (Mokoena 2017; Garcia-Castillo et al. 2019; Zhao et al. 2019) for human health of probiotics, the antioxidative activity of LAB has attracted more and more attention (Amaretti et al. 2013; Tang et al. 2016; Zhao et al. 2018). Traditional Chinese fermented vegetables contain abundant LABs. In this study, for isolation of new LAB strains with high antioxidant activity, the variety of fermented vegetable samples from different areas of China were collected, and 481 LAB strains were isolated from these samples (Table SI). A DPPH free radical scavenging method can directly and rapidly reflect the antioxidant capacity of lactic acid bacteria and has been widely used to evaluate this activity (Antolovich et al. 2002; Ding et al. 2017; Lin et al. 2018b). After screening of the antioxidant activity of 481 LAB strains with a DPPH free radical scavenging method, six strains with a high DPPH radical scavenging rate were selected. It should be noted that these six strains were isolated from the fermented vegetable samples, which were collected from southwestern China. The *L. fermentum* JX306, isolated from Chinese sauerkraut in Jiangxi Province, showed the highest scavenging ability of DPPH radicals at a density of 10^8 CFU/ml (37.29%). Additionally, the strains of *L. plantarum* GZ328 and *L. fermentum* GZ394 (Table II), which showed high DPPH radical scavenging ability, were also isolated from Chinese sauerkraut. Therefore, the sauerkraut from southwestern China is a good source for the isolation of LAB with high antioxidant activity.

A D-galactose-induced oxidative stress model is a very mature model in many animal experiments (Ho et al. 2003). In this study, the antioxidant activities of *L. fermentum* JX306 were verified in vivo in a D-galactose-induced aging mice model. MDA is considered one of the by-products of the lipid peroxidation process, and its concentration is one of the most commonly used biomarkers to reflect the lipid peroxidation level (Nielsen et al. 1997). It was reported that *L. plantarum* CCFM10, *L. plantarum* AR501, and *L. delbrueckii subsp. bulgaricus* F17 can decrease the level of MDA and inhibit the generation of an excess of free radicals (Ding et al. 2017; Lin et al. 2018b; Zhao et al. 2018). A comprehensive analysis of the literature and our results shows that lactic acid bacteria could indeed relieve the D-galactose-induced oxidative damage. After oral administration of *L. fermentum* JX306 for eight weeks, the MDA levels in serum, liver, and kidney were significantly lower than those in the NC group. Therefore, *L. fermentum* JX306 has high lipid antioxidant activity.

Generally, excess of free radicals is mainly eliminated by redox systems in the body, such as the sulfur oxygen reduction (TRX) system and the glutathione (GSH) system, which can reduce and control the occurrence of the oxidative stress–related diseases (Yu et al. 2015; Lin et al. 2018a). GSH-Px is the most important antioxidant factor in the glutathione (GSH) system, which could directly scavenge free radicals and prevent cell damage (Esposito et al. 2000; Ding et al. 2017). The oral treatment with *L. fermentum* JX306 strain could significantly increase the antioxidant enzymatic activity of GSH-Px in the liver and kidney of mice. SOD is the key enzyme for hastening the reaction of superoxide anions to H_2O_2 (Nordberg and Arner 2001). However, almost no difference was observed in SOD levels among these groups. Our results were supported by previous research (Zhao et al. 2018), and the low toxicity and slow action of D-galactose may be the reason that no significant differences in SOD levels among these groups were observed (Zhao et al. 2018). Total antioxidant capacity (T-AOC) represents the ability of non-enzymatic antioxidant systems to scavenge an excess of free radicals (Zhang et al. 2013). After intragastric administration of *L. fermentum* JX306, T-AOC levels showed an upward trend in the serum, liver, and kidney. Similar to our findings, the previous researches reported that intragastric administration of *L. fermentum* JX306, *L. plantarum* AR501 (Lin et al. 2018a), *L. plantarum* CCFM10, and *L. plantarum* RS15-3 (Zhao et al. 2019) significantly increased T-AOC in the liver.

Normal dose of D-galactose can be metabolized into glucose through the liver enzymatic hydrolysis, and excessive concentration of D-galactose will induce the production of reactive oxygen radicals, causing oxidative damage to liver tissues. To further elucidate the antioxidant mechanism, the changes in the relative level of mRNA encoding Prdx1, Gsr, Gpx, and TR3 in the liver were determined. GSH serves as the most abundant cellular thiol resource and provides a buffer system to maintain the cellular redox status. Prdx1, Gsr, and Gpx are all part of a glutathione peroxidase/glutathione/glutathione reductase antioxidant pathway
Acknowledgments

This experiment was supported by the National Natural Science Foundation of China (31772060) and Shandong Provincial Key Laboratory of Agricultural Microbiology Open Fund (SDKL2017015).

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

Lin X, Xia Y, Wang G, Yang Y, Xiong Z, Li F, Zhou W, Ai L. Lactic acid bacteria with antioxidant activities alleviating oxidized oil...

Supplementary materials are available on the journal's website.
Performance Evaluation of Different Commercial Serological Kits for Diagnosis of Acute Hepatitis E Viral Infection

QIANG ZHANG*, XIAOLONG ZONG, DONGMING LI, JING LIN and LIHUA LI

1 Department of Clinical Laboratory, Branch of Tianjin Third Central Hospital, Tianjin, China
2 Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, China
3 Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, China

Submitted 7 March 2020, revised 4 May 2020, accepted 9 May 2020

Abstract
Clinical diagnosis of hepatitis E viral (HEV) infection mainly relies on serological assays, and the current status of misdiagnoses regarding HEV infection is uncertain. In this study, patients with acute HEV infection were tested for anti-HEV IgM and IgG, a HEV antigen (Ag), and viral loads (HEV RNA). Serology was performed using four commercial HEV ELISA kits: Wantai, Kehua, Lizhu, and Genelabs IgM and IgG. The HEV RNA was detected using RT-PCR assays. The sensitivities of different kits for anti-HEV IgM ranged from 82.6% to 86%. Each kit for anti-HEV IgM was highly specific (97.8–100%). The sensitivities of all kits to detect anti-HEV IgG with (87.2–91.9%) had a substantial agreement, but the Kehua and Genelabs tests were more specific than the Wantai and Lizhu tests. The Wantai tests for the HEV Ag and HEV RNA were also important for acute HEV infections (Kappa = 0.787). Furthermore, a total of 6.98% of HEV infections were positive for HEV RNA but negative for both the HEV Ag and anti-HEV antibodies of IgM and IgG classes. Our findings demonstrate that the diagnosis of hepatitis E may be missed if only serological assays are used. Thus, a combination of serological and nucleic acid testing provides the optimal sensitivity and specificity to the diagnostic process.

Key words: hepatitis E virus, serological markers, diagnostic performance, enzyme-linked immunosorbent assay, misdiagnosis

Introduction
Hepatitis E is the infection of the liver caused by a virus known as the hepatitis E virus (HEV) and has posed severe public health hazards around the world. HEV has four major genotypes (1–4) that are globally distributed into different epidemiological patterns based on socioeconomic factors and ecology (Lu et al. 2006). HEV genotypes 1 and 2 infect humans solely (Ahmad et al. 2011). Generally, genotype 1 accounts for the epidemics in some parts of Asia, while genotype 2 is more prevalent in Africa, Mexico, and other developing countries (Colson et al. 2012). Genotypes 3 and 4 are zoonotic with an expanded host range (Okamoto 2007), while there have been noted chronic HEV infections in immunosuppressed patients (Honer zu Siederdissen et al. 2014). Genotype 3 is prevalent worldwide, while genotype 4 is mainly present in Asia. Besides, genotypes 5 and 6, which primarily infect wild boar, have been found in Japan (Sato et al. 2011; Takahashi et al. 2011). Recently, new genotypes, known as HEV-7 and HEV-8, were also found to infect camels and humans (Al-Sadeq et al. 2017).

Currently, HEV’s diagnosis depends on specific serological and nucleic acid tests, as the clinical manifestations and routine laboratory measures of HEV are similar to those of other acute hepatitis (Zhang et al. 2019). There are four major methods for diagnosing hepatitis E, including the detection of anti-HEV IgM and IgG antibodies, the antigen (Ag), and HEV RNA. Presently, the clinical diagnosis of acute hepatitis E cases mainly depends on the serological detection of anti-HEV antibodies (Dreier and Juhl 2014). However, equivalence, sensitivity, and specificity in the results of the HEV Enzyme-linked Immunosorbent Assay (ELISA) kits tend to differ between manufacturers, leading to discrepancies in the rates of anti-HEV antibodies among different populations (Herremans et al. 2007; Drobenic et al. 2010), together with the HEV genome heterogeneity, and the different antigenic structure...
of HEV proteins. Moreover, cross-reactions of anti-HEV IgM with the Epstein-Barr virus (EBV) and cytomegalovirus (CMV) antibodies have been reported, which cause false-positive results (Hyams et al. 2014). Currently, the development of the HEV RNA assay kits is in the early stages in China and has not yet been widespread. Thus, the clinical diagnosis of HEV infection still mainly relies on serological assays with a few reports of hepatitis E misdiagnoses occurring in China.

In the present study, the performance of four commercial serological assays and PCR assay for the detection of HEV infection was evaluated, and the possibility of misdiagnosing of this infection using serological detection alone was determined.

Experimental

Samples. From March 2014 to March 2018, 364 serum samples were collected from Tianjin Third Central Hospital and Tianjin Medical University General Hospital. A total of 86 cases were diagnosed with acute viral hepatitis E (Kamar et al. 2014; European Association for the Study of the Liver 2018), 91 cases with rheumatic diseases (RD) including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), and 91 cases with viral hepatitis by CMV or EBV according to the diagnostic guidelines of each disease. Meanwhile, 96 healthy volunteers were included in this study. Five milliliters of venous blood was collected and agglutinated for 10 min at 37°C, and subsequently centrifuged at 3,000×g for 15 min at 4°C. The serum was taken and stored at −80°C before analysis. This study received approval from the Branch of Tianjin Third Central Hospital Ethics Committee (2019028). Our study was non-interventional and did not involve any specific sampling or addition to the usual procedures. An anonymized database provided analytical support. Therefore, the ethics committee waived the need for patient consent.

HEV serological assays. The commercially available HEV ELISA kits were selected with Wantai (Beijing, China), Kehua (Shanghai, China), Lizhu (Zhuhai, China), and Genelabs (Singapore, Singapore) for the detection of both IgM and IgG antibodies. For the HEV Ag assay, the Wantai was the only available commercial provider for the ELISA kit in China. All the experimental operations were performed according to the instructions recommended by manufacturers. Results of the ELISA tests were listed as ratios (s/co), and interpretations were made as advised in the instructions.

The HEV RNA assay. One-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay was set up by our research team and had been approved for clinical use. Primers and probes were designed based on a multiple sequence alignment of the HEV genome sequences in the ORF3 region, and synthesized by the Sangon Biotech Company (Shanghai, China): forward primer, 5’-GGTGGTTTCTGGGT-GAC-3’ (Tm = 61.2°C); reverse primer, 5’-AGGGTTG- GTTGGATGAA-3’ (Tm = 61.2°C); probe, 5’-TGATTC- TCAGCCCTTGC-3’ (Tm = 62.5°C). NCBI-Primer-BLAST searches for the primers and probe showed that the genetic sequences of the different HEV genotypes 1–4 were highly conserved in the ORF3 region. Firstly, the target fragment of 70 bp was amplified from the strain of HEV genotype 4 (CHNXJ-SW13) by the forward and reverse primers mentioned above, and then inserted the fragment into Promega T-easy Vector (3105 bp) to obtain the standard plasmid. Serial dilutions plasmids of 5 × 10^0 ~ 5 × 10^9 copies/µl were obtained by 10-fold dilution, and the standard curve was established. Total RNA was extracted from 140 µl serum using TIANamp Virus RNA Kit (Tiangen, Beijing, China). The One-Step PrimeScript’ RT-PCR Kit (Takara, Dalian, China) enabled the performance of RT-qPCR in a total 20-µl reaction system, including 10 µl GoTaq Probe qPCR Master Mix (1×), 0.4 µl GoScript RT Mix for one-step RT-qPCR (1×), 1 µl forward primer (500 mM), 1 µl reverse primer (500 mM), 0.5 µl probe (250 nM), 5.1 µl RNase-Free H2O and 2 µl RNA template or standard plasmid of HEV. Subsequently, the reaction was conducted with the MX3000P Real-Time QPCR System (Aligent, California, USA). The conditions for PCR amplification involved the following: 1 cycle at 45°C for 30 min, 1 cycle at 95°C for 15 min, followed by 45 cycles at 95°C for 10 sec, at 55°C for 20 sec and at 72°C for 15 sec. The expression of the HEV RNA was calculated according to the standard curve established by plasmids with different dilutions.

Data analysis. Commercially available software was used for all the statistical analyses (MedCalc, version 18.2, Belgium). The receiver operating characteristic (ROC) curve was used to analyze the diagnostic performances for anti-HEV IgG and IgM assays. Agreement between different kits were assessed by the Kappa statistic. The level of agreement was defined by the Kappa coefficient as excellent (> 0.8), substantial (0.6–0.8), moderate (0.4–0.6), fair (0.2–0.4), and poor (< 0.2) (Nogues-Sabate et al. 2018). A p-value of less than 0.05 was considered statistically significant. Additionally, two-sided 95% confidence intervals (CI) were calculated.

Results

Performance of anti-HEV IgM assays. The diagnostic performance characteristic of each anti-HEV IgM kit was determined by the ROC curve. As shown
in Table I, the area under the curve (AUC) value of the ELISA kits ranged from 0.909 to 0.93. The sensitivity among the 86 acute HEV infections ranged from 82.6% to 86% (Table I), suggesting an excellent agreement (Kappa: 0.819–1) in anti-HEV IgM antibody detection between the ELISA kits (Table II). All the anti-HEV IgM assays evaluated demonstrated good specificities (97.8–100%), except for two false-positive results obtained from the RD cases detected by the Genelabs ELISA kit. No positive results were shown in CMV/EBV infected patients by all the assays (Table I), which demonstrated that there were no cross-reactions of IgM against CMV and EBV.

Table I
Diagnostic performance of anti-HEV IgM assays.

<table>
<thead>
<tr>
<th>Commercial tests</th>
<th>% Sensitivity (95% CI)</th>
<th>% Specificity (95% CI)</th>
<th>% PPV (95% CI)</th>
<th>% NPV (95% CI)</th>
<th>AUC (95% CI)</th>
<th>p</th>
<th>% Specificity with RD (95% CI)</th>
<th>% Specificity with CMV/EBV (95% CI)</th>
<th>% Specificity with healthy (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wantai</td>
<td>84.9 (75.5–91.7)</td>
<td>100 (98.7–100)</td>
<td>100 (100–100)</td>
<td>95.5 (92.8–97.2)</td>
<td>0.924 (0.892–0.949)</td>
<td><0.01</td>
<td>100 (100–100)</td>
<td>100 (100–100)</td>
<td>100 (100–100)</td>
</tr>
<tr>
<td>Kehua</td>
<td>86.0 (76.9–92.6)</td>
<td>100 (98.7–100)</td>
<td>100 (100–100)</td>
<td>95.9 (93.2–97.5)</td>
<td>0.930 (0.899–0.954)</td>
<td><0.01</td>
<td>100 (100–100)</td>
<td>100 (100–100)</td>
<td>100 (100–100)</td>
</tr>
<tr>
<td>Lizhu</td>
<td>83.7 (74.2–90.8)</td>
<td>100 (98.7–100)</td>
<td>100 (100–100)</td>
<td>95.2 (92.5–97.0)</td>
<td>0.919 (0.886–0.945)</td>
<td><0.01</td>
<td>100 (100–100)</td>
<td>100 (100–100)</td>
<td>100 (100–100)</td>
</tr>
<tr>
<td>Genelabs</td>
<td>82.6 (72.9–89.9)</td>
<td>99.3 (97.4–99.9)</td>
<td>97.3 (89.9–99.3)</td>
<td>94.8 (92.1–96.7)</td>
<td>0.909 (0.875–0.937)</td>
<td><0.01</td>
<td>97.8 (94.8–100)</td>
<td>100 (100–100)</td>
<td>100 (100–100)</td>
</tr>
</tbody>
</table>

Table II
Concordance for anti-HEV IgM assays in the diagnosis of the acute HEV infections.

<table>
<thead>
<tr>
<th>Commercial tests</th>
<th>% Concordance</th>
<th>Kappa (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wantai</td>
<td>98.8</td>
<td>0.950 (0.852–1.000)</td>
</tr>
<tr>
<td>Kehua</td>
<td>98.8</td>
<td>0.953 (0.862–1.000)</td>
</tr>
<tr>
<td>Lizhu</td>
<td>95.3</td>
<td>0.819 (0.648–0.990)</td>
</tr>
<tr>
<td>Genelabs</td>
<td>96.5</td>
<td>0.860 (0.706–1.000)</td>
</tr>
<tr>
<td>Kehua</td>
<td>97.7</td>
<td>0.903 (0.771–1.000)</td>
</tr>
<tr>
<td>Lizhu</td>
<td>96.5</td>
<td>0.860 (0.706–1.000)</td>
</tr>
<tr>
<td>Genelabs</td>
<td>96.5</td>
<td>0.868 (0.722–1.000)</td>
</tr>
</tbody>
</table>

Table III
Diagnostic performance of anti-HEV IgG assays.

<table>
<thead>
<tr>
<th>Commercial tests</th>
<th>% Sensitivity (95% CI)</th>
<th>% Specificity (95% CI)</th>
<th>% PPV (95% CI)</th>
<th>% NPV (95% CI)</th>
<th>AUC (95% CI)</th>
<th>p</th>
<th>% Specificity with RD (95% CI)</th>
<th>% Specificity with CMV/EBV (95% CI)</th>
<th>% Specificity with healthy (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wantai</td>
<td>91.9 (83.9–96.7)</td>
<td>74.8 (69.3–79.8)</td>
<td>53.0 (47.7–58.3)</td>
<td>96.7 (93.6–98.4)</td>
<td>0.833 (0.791–0.870)</td>
<td><0.01</td>
<td>79.2 (71.0–87.3)</td>
<td>81.3 (73.3–89.3)</td>
<td>64.6 (55.0–74.1)</td>
</tr>
<tr>
<td>Kehua</td>
<td>87.2 (78.3–93.4)</td>
<td>97.5 (94.9–99.0)</td>
<td>91.5 (83.7–95.7)</td>
<td>96.1 (93.4–97.7)</td>
<td>0.923 (0.891–0.949)</td>
<td><0.01</td>
<td>98.9 (96.6–100)</td>
<td>97.8 (94.8–100)</td>
<td>96.9 (93.4–100)</td>
</tr>
<tr>
<td>Lizhu</td>
<td>89.5 (81.1–95.1)</td>
<td>75.3 (70.4–80.8)</td>
<td>53.5 (48.0–58.9)</td>
<td>95.9 (92.6–97.8)</td>
<td>0.827 (0.784–0.865)</td>
<td><0.01</td>
<td>83.5 (75.9–91.1)</td>
<td>74.7 (65.8–83.6)</td>
<td>69.8 (60.6–79.0)</td>
</tr>
<tr>
<td>Genelabs</td>
<td>88.4 (79.7–94.3)</td>
<td>97.5 (94.9–99.0)</td>
<td>91.6 (83.9–95.8)</td>
<td>96.4 (93.8–98.0)</td>
<td>0.929 (0.898–0.953)</td>
<td><0.01</td>
<td>98.9 (96.6–100)</td>
<td>96.7 (93.0–100)</td>
<td>97.9 (95.0–100)</td>
</tr>
</tbody>
</table>

The HEV Ag and HEV RNA assays.
A total of 36 acute HEV patients were positive for the HEV Ag
Zhang Q. et al. using the Wantai ELISA kit, with no positive cases found among the non-HEV infection patients. A total of 44 acute HEV infection patients were positive for HEV RNA. The consistency rate between the HEV Ag and RNA was 90.7% (78/86), as shown in Table V. The two methods had a substantial agreement with a Kappa coefficient of 0.787 (0.656–0.918). Furthermore, six of the 86 samples were positive for HEV RNA but negative for anti-HEV IgM and IgG antibodies, and the HEV Ag by all ELISA kits (Fig. 1).

Discussion

To date, the identification of serological markers in HEV infections using accurate diagnostic assays remains a challenge. There are a plethora of issues regarding the specificity and sensitivity of HEV serological assays in epidemiological and clinical settings that require urgent attention. In this present study, we evaluated four dominant, commercially available anti-HEV IgM and IgG assays, as well as the HEV Ag and HEV RNA to investigate the misdiagnosis's current status rely on the current measurements.

Anti-HEV IgM appears in the early phase of acute hepatitis E. The antibodies can be detected as early as four days after the onset of jaundice and last up to five months (Kuniholm et al. 2009). There are two main methods in anti-HEV IgM serological assays: the capture method with anti-human IgM μ chain (Wantai, Kehua and Lizhu), and the indirect method (Genelabs). The sensitivity and specificity of different meth-

Table IV

Concordance for anti-HEV IgG assays.

<table>
<thead>
<tr>
<th>Commercial tests</th>
<th>Concordance of HEV</th>
<th>Concordance of RD</th>
<th>Concordance of CMV/EBV</th>
<th>Concordance of healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Kappa (95% CI)</td>
<td>%</td>
<td>Kappa (95% CI)</td>
<td>%</td>
</tr>
<tr>
<td>Wantai Kehua</td>
<td>95.3</td>
<td>0.753 (0.524–0.982)</td>
<td>80.2</td>
<td>0.081 (–0.069–0.231)</td>
</tr>
<tr>
<td></td>
<td>81.3</td>
<td>0.069 (–0.102–0.239)</td>
<td>88.5</td>
<td>0.809 (0.664–0.954)</td>
</tr>
<tr>
<td></td>
<td>82.4</td>
<td>0.153 (–0.064–0.369)</td>
<td>67.7</td>
<td>0.111 (–0.007–0.229)</td>
</tr>
<tr>
<td>Lizhu</td>
<td>98.8</td>
<td>0.927 (0.785–1.000)</td>
<td>91.2</td>
<td>0.712 (0.525–0.898)</td>
</tr>
<tr>
<td></td>
<td>94.8</td>
<td>0.882 (0.782–0.982)</td>
<td>94.8</td>
<td>0.880 (0.751–0.982)</td>
</tr>
<tr>
<td>Genelabs</td>
<td>96.5</td>
<td>0.805 (0.592–1.000)</td>
<td>80.2</td>
<td>0.081 (–0.069–0.231)</td>
</tr>
<tr>
<td></td>
<td>98.9</td>
<td>0.795 (0.403–1.000)</td>
<td>99.0</td>
<td>0.852 (0.566–1.000)</td>
</tr>
</tbody>
</table>

Table V

Consistency for HEV Ag and HEV RNA assays in the diagnosis of the acute HEV infections.

<table>
<thead>
<tr>
<th>HEV RNA +, n (%)</th>
<th>HEV RNA −, n (%)</th>
<th>Total, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 (41.86)</td>
<td>0 (0)</td>
<td>36 (41.86)</td>
</tr>
<tr>
<td>8 (9.3)</td>
<td>42 (48.84)</td>
<td>50 (58.14)</td>
</tr>
<tr>
<td>44 (51.16)</td>
<td>42 (48.84)</td>
<td>86 (100)</td>
</tr>
</tbody>
</table>

Fig. 1. Flow diagram for patients with acute viral hepatitis E.
ods present variations in anti-HEV IgM assays with a recent study demonstrating a high cross-reactivity of HEV IgM compared to EBV and CMV (Drobeniuc et al. 2010). However, in the present study, no false-positive results due to cross-reactivity with EBV- or CMV-infected patients were observed, indicating the highly specific nature of the anti-HEV IgM assays. Moreover, these findings were found to be consistent with those of the other groups, including immunocompromised patients (Abravanel et al. 2013) and infections with HEV genotype 3 (Legrand-Abravanel et al. 2009). The Genelabs ELISA kit detected two false-positive results obtained from patients with RD. This finding supports the opinion that the capture method using the anti-human IgM μ chain is more specific than the indirect method using the anti-HEV IgM assay.

In general, the detection of anti-HEV IgG is usually used as an indicator of past infection. However, the appearance of the anti-HEV IgG antibody is early, which could be used in the clinical diagnosis of acute HEV infection (Aggarwal and Jameel 2011). The Qatar research group found that Wantai HEV-IgG assays revealed high sensitivity and specificity with excellent Kappa concordance using different enzyme immunoassays in assessing seroprevalence of HEV antibodies (Al-Absi et al. 2018). However, a significant discrepancy in anti-HEV IgG results between different assay kits in the non-HEV population was found in our study. The positive rates were significantly higher by the Wantai and Lizhu kits than those of Kehua and Genelabs. A Korean research compared anti-HEV IgG antibody results using the Genelabs and Wantai ELISA kits to estimate HEV serum prevalence in the Korean population (Park et al. 2012). They found a significant inconsistency in the results between the two assays, which was also observed in our study. Therefore, epidemiological investigations of HEV in the population may lead to significant inconsistencies when different kits are used. The Kehua and Genelabs IgG assays had high specificities in the non-HEV population and could be used in the clinical diagnosis of HEV. On the other hand, the Wantai and Lizhu IgG assays were more suitable for epidemiological investigations because the positive rates in the non-HEV population were too high to distinguish the acute HEV infection from the previous disease.

In this study, all four anti-HEV IgG serological assays used the indirect method. There are two major types of antigens coated on the plates for binding of anti-HEV IgG antibodies, including synthetic peptides and recombinant proteins (Innis et al. 2002; Ulanova et al. 2008). The use of the recombinant ORF2-encoded protein in numerous serological studies has revealed its significant efficacy in the identification of antibodies against various HEV strains (Christensen et al. 2008; Kuniholm et al. 2009). Since recombinant proteins can replicate the HEV neutralizing epitope better than the synthetic peptides, the results in the Wantai anti-HEV IgG assay were more sensitive. A French research group also substantiated that the Wantai IgG assay was the most sensitive amongst all other eight commercial ELISA kits used to detect HEV of genotypes 1 and 3 (Abravanel et al. 2013). The results suggested that the anti-HEV IgM assay was superior in the diagnosis of acute HEV infection due to its good specificity when paired with the Wantai anti-HEV IgG assay, which could improve the accuracy of diagnosis.

The latest reports have indicated that this novel HEV Ag is a resourceful serum marker to detect the acute HEV infection and has a good consistency with HEV RNA (Zhang et al. 2006; Zhao et al. 2015; Fraga et al. 2018; Zhang et al. 2019). Our findings in this study also supported this view. However, all the HEV Ag positive samples showed positive anti-HEV IgM results (Fig. 1), which provided no direct evidence to support that Ag detection could improve diagnostic efficiency. Furthermore, six samples were only positive for HEV RNA but negative for anti-HEV IgM and IgG, as well as Ag in all ELISA kits employed, which showed that 6.98% of acute HEV infection patients have a chance to be misdiagnosed if reliant on serological assays detection alone. It indirectly indicates that HEV RNA detection can improve diagnostic efficiency. However, despite the highly specific and sensitive capability of some PCR assays for the detection of HEV RNA, their utility has been restricted due to the short period of HEV viremia detection. Therefore, the incidence of acute HEV infection cannot be completely ruled out by a negative HEV PCR result.

In conclusion, for the successful diagnosis of acute viral hepatitis E, a combination of nucleic acid and serological tests is imperative to provide excellent specificity and sensitivity to the diagnosis. However, we also observed significant inconsistencies between the serological and HEV RNA assays; thereby, caution is warranted while interpreting the results of both serological and molecular tests in HEV diagnosis.

Acknowledgments
This project was supported by the Tianjin Science and Technology Program of China (No. 17ZXHLSY00020).

Conflict of interest
The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature
https://doi.org/10.1128/CMR.00057-13
https://doi.org/10.1086/599319
https://doi.org/10.1128/CVI.00438-08
https://doi.org/10.1002/rmv.482
https://doi.org/10.1007/s00405-018-5063-8
https://doi.org/10.1016/j.virusres.2007.02.002
https://doi.org/10.1186/1471-2334-12-142
https://doi.org/10.1007/s00405-011-0988-x
https://doi.org/10.1099/vir.0.029470-0
https://doi.org/10.1016/j.virusres.2007.02.002
https://doi.org/10.1111/j.1537-2717.2009.01937.x
- Supplementary materials are available on the journal's website.
N-acetylcysteine (NAC) Attenuating Apoptosis and Autophagy in RAW264.7 Cells in Response to Incubation with Mycolic Acid from Bovine *Mycobacterium tuberculosis* Complex

XUE LIN\(^1\), MENGMENG WEI\(^1,2\), FUYANG SONG\(^1,2\), DI XUE\(^1,2\)* and YUJIONG WANG\(^1,2\)*

\(^1\) Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
\(^2\) College of Life Science, Ningxia University, Yinchuan, Ningxia, China

Submitted 17 March 2020, revised 10 May 2020, accepted 10 May 2020

Abstract

Bovine tuberculosis is an airborne infectious disease caused by organisms of the *Mycobacterium tuberculosis* (MTB) complex. Mycolic acid (MA) is the main lipid component of the cell membrane of MTB. It is non-enzymatically reduced by NAD(P)H and further produces reactive oxygen species (ROS), which can cause oxidative stress in human cells. N-acetylcysteine (NAC) is a synthetic precursor of glutathione (GSH) and exhibits anti-ROS activity. However, the underlying mechanisms of its protective properties remain uncertain. Herein, after pre-incubation of RAW264.7 cells with NAC, the factors associated with apoptosis and autophagy were measured. Mechanistically, NAC could reduce MA-induced expression of pro-apoptotic and pro-autophagy proteins. At the mRNA level, NAC can inhibit AMPK and activate mTOR expression. The results indicate that NAC might regulate autophagy in RAW264.7 cells through the AMPK/mTOR pathway. To further prove the effect of NAC on MA, ICR mice were used to evaluate the lung injury. Hematoxylin-eosin (HE) staining was performed on the lung. The results show that NAC could reduce cell injury induced by MA. In conclusion, our research showed that NAC attenuates apoptosis and autophagy in response to incubation with mycolic acid.

Key words: N-acetylcysteine, mycolic acid, apoptosis, autophagy

Introduction

Bovine tuberculosis is an airborne infectious disease caused by organisms of the *Mycobacterium tuberculosis* (MTB) complex (Baker et al. 2019). MTB complex often colonizes immunocompromised hosts, then induces inflammation, and disrupts the host immune response. MTB can produce many substances to exert its virulence to mammalian cells. One of them is mycolic acid (MA). MA is a unique lipid component of the MTB cell wall and plays an essential role in the process of binding MTB to macrophages (Lehmann et al. 2018). Previous studies have shown that MTB lacking MA is less pathogenic in vivo, suggesting that MA plays an important role in MTB’s infection (Slama et al. 2016). Furthermore, MTB promotes bacterial survival by inducing oxidative stress in macrophages (Mohanty et al. 2016). Therefore, the strategy to alleviate the virulence of MTB is to inhibit the biosynthesis of MA, neutralize the oxidative stress produced by MA, and reduce the damage of ROS to intracellular substances.

N-acetylcysteine (NAC) is a synthetic precursor of intracellular cysteine and glutathione (GSH) (Aldini et al. 2018), and its anti-ROS activity is attributed to the ability to react with oxygen ions. Some researchers believe that inhaled GSH or NAC can increase the level of GSH and reduce the oxidative damage that MTB causes to the host (Amaral et al. 2016). Several reports show that NAC protects against oxidative stress-induced cell death (Wang et al. 2014). The self-protective mechanism of intracellular MTB produces free radicals, which increases the toxicity to cells, so whether antioxidants are beneficial for MTB infection is still under investigation. As a marker of MTB cell
envelope (Lederer et al. 1975), does MA affect cells? Although a large body of literature has elucidated the structural mechanism of MA (Marrakchi et al. 2014), it is unclear whether NAC affects autophagy and apoptosis of MA-incubated RAW cells.

In this study, RAW264.7 macrophages were used to explore further the immunological response and cell damage of host cells after incubation with MA. Animal experiments were performed to investigate the role of NAC in antagonizing the effects of MA in the induction of apoptosis and autophagy.

Experimental

Materials and Methods

Animals. Male ICR (Institute of Cancer Research) mice aged six weeks were purchased from the Chinese Academy of Sciences (Shanghai, China). The Ethics Committee approved all experimental procedures for Laboratory Animals at the Ningxia University. Mice were kept under conditions of a pathogen-free facility and given free access to food and tap water. After the mice were acclimated for one week, the mice were divided into the following four treatment groups: 1) the control group (administered 50 µl, 0.9% saline by intranasal route for 7 days); 2) the MA group (received 50 µl MA [50 µg/ml] for 7 days); 3) the MA + NAC group (received 50 µl MA [50 µg/ml] by intranasal route 3 hours post NAC protection for 7 days); and 4) the NAC group (received intranasal NAC for 7 days).

Histological evaluation. Mice were sacrificed by cervical dislocation at indicated time points. Lungs were extracted from mice, washed once with PBS, fixed in 4% paraformaldehyde for 24 hours, and stained with hematoxylin and eosin. The fixed tissue was embedded in paraffin and cut into 4-μm-thick sections using a microtome.

Cell culture. The RAW264.7 cell line was cultured in DMEM medium supplemented with 10% FBS and incubated at 37°C and 5% CO₂. Tissue-culture plasticware was acquired from Corning (Tewksbury, MA, USA). Before incubation, the cell line was seeded at a density of 1 × 10⁶ cells per well in 6-well plates. The total cell number was determined with an automated vision-based cell counter.

Assessment of cell viability. To assess the viability rate of cells, we used the MTT assay (Sigma-Aldrich, Saint Louis, MO, USA). The RAW264.7 cells were seeded at a density of 5 × 10⁴ cells per well in 96-well plates. They were subsequently treated with MA (50 µg/ml) for 0, 6, 12, and 24 hours. Another cells were pretreated with NAC at a concentration of 600 mg/ml for 2 hours before treatment with MA. After 2 hours, the culture supernatant was replaced with fresh DMEM. MA (50 µg/ml) was added to a culture medium. After 6, 12, and 24 hours of incubation, the MTT solution (50 µl) was added to each well. The absorbance was measured at 560 nm with a microplate reader (Bio-Rad Laboratories Inc, Hercules, CA, USA). The reading was converted to the percentage of the controls.

Quantification of IL-6 levels by ELISA. The RAW264.7 cell culture supernatant in each group was collected for the measurement of pro-inflammatory cytokine IL-6 levels. According to the manufacturer’s instructions, the IL-6 levels were assayed by the cytokine ELISA (Wuhan Boster Biological, Wuhan, China).

Real-time quantitative PCR analysis. The total RNA was extracted using the MiniBEST Universal RNA Extraction Kit (Takara Biotecnology, Dalian, China). RNA was reverse transcribed into cDNA according to the experimental procedure of the high-capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA, USA). The reverse transcription products were used as templates and subjected to quantitative PCR (Q-PCR). The obtained cDNA was subjected to PCR amplification in an ABI 7500 Fast thermocycler (Applied Biosystems, USA) using a SYBR-Green PCR Kit (Takara Biotechnology, Dalian, China). A two-step PCR cycle procedure was used: 95°C for 30 seconds, then 40 cycles for 5 seconds at 95°C, followed by an annealing and extension step at 60°C for 15 seconds. After completion of PCR amplification, DNA melting curve analysis was performed. The primers were synthesized by Shanghai Sango Company (Shanghai, China). Specific primer sequences for each gene are shown in Table I.

Table I

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α</td>
<td>CGCTGAGGTCAATCTGC</td>
<td>GGCTGGTGAGAGAATGGA</td>
</tr>
<tr>
<td>Caspase-9</td>
<td>AGGATTTCTGCCTTTCAC</td>
<td>TGGAGATTTTTGTGGTCAGC</td>
</tr>
<tr>
<td>mTOR</td>
<td>CTGGGGCTGCTTCTGT</td>
<td>ACGGTTCCTCGCTTGT</td>
</tr>
<tr>
<td>AMPK</td>
<td>CATCCTCATAACCCATGCC</td>
<td>ACAAGCCCCGAACAAA</td>
</tr>
</tbody>
</table>

Gene name

Primer sequences.
Western blot analysis. Total protein was extracted from the different treatment groups using the M-PER Mammalian Protein Extraction Reagent (Pierce, Rockford, IL, USA). The protein sample (20 μg) was mixed with 6x loading buffer and baked for 5 minutes. The proteins from each treatment group at the equal concentrations were separated by electrophoresis on 10% SDS-PAGE and then transferred to a nitrocellulose membrane (Mini-PROTEAN Tetra Cell, Bio Rad, Hercules, CA, USA). Membranes were blocked in 5% milk, immersed in the primary antibody solution, and incubated overnight at 4°C. It was thoroughly washed six times with 0.5% TBS-Tween, for 5 minutes each time. Then, the membrane was incubated with the secondary antibody for 1 hour at room temperature. Protein bands were displayed using a chemiluminescence (ECL) kit (UVP, Upland, CA, USA). β-actin was used as an internal control. The band intensity of the protein was quantified by using the ImageJ program. Antibodies used for blotting were BAX, LC3, and beclin-1 (at the dilution of 1:2000).

Statistics. Results are expressed as mean ± standard deviation. One-way ANOVA using the Student's t-test was used for multiple comparisons in SPSS 16.0 software. *P* < 0.05 was considered to represent a statistically significant difference.

Results

NAC decreases RAW264.7 cell viability during incubation with MA. The viability of RAW264.7 macrophages incubated with MA was determined with the MTT assay. The cells were treated with MA (50 μg/ml) for 0, 6, 12, and 24 hours. Other groups of cells were pretreated with NAC at a concentration of 600 mg/ml. The results showed a significant reduction of the RAW264.7 viability after treatment with MA when compared to the control after 6 hours of incubation, and the survival rate of the cells incubated with MA continued to decline within 36 hours (Fig. 1A). Pretreatment with NAC provided a significant increase in viability when compared to the MA-treated cells.

The IL-6 level in the supernatant was measured with an ELISA to elucidate further the cytokine level in the MA-induced cell damage and the effect of NAC on RAW264.7 macrophages. The results confirmed that MA could reduce the secretion of IL-6 compared with the control group (Fig. 1B). In contrast to the MA-treated cells, the treatment with NAC reduced the secretion of IL-6 significantly.

NAC reduces MA-induced apoptosis in RAW264.7 macrophages in vivo. To determine whether NAC regulates the apoptosis of RAW264.7 cells exposed to MA, the Western blot was used to analyze the relative expression of the BAX gene, which encodes an important protein for the regulation of apoptosis. As shown in Fig. 2B, MA induced a decrease in the BAX level compared with the control. Combined treatment of NAC further exaggerated this effect, indicating that NAC reduced apoptosis in RAW264.7 cells treated with MA.

Then, the caspase-9 mRNA level was pronouncedly decreased when compared to MA in the MA+NAC group (Fig. 2D). The level of TNF-α mRNA was found to decrease when compared to MA (Fig. 2C). This observation further proved the protective effect of NAC on RAW364.7 cells.

NAC reduces MA-induced autophagy in RAW264.7 cells via the AMPK/mTOR signaling pathway. To further explore the upstream events that
were induced by the combination of MA and NAC, we measured the expression of autophagy-related factors. LC3 and beclin-1 are essential cytokines involved in the regulation of autophagy. As shown in Fig. 3A and B, pretreatment with NAC significantly suppressed the expression of LC3 and beclin-1 under MA treatment. This result indicates that NAC decreased autophagy in MA-treated RAW264.7 cells (Fig. 3A-C).

Fig. 2. Effects of NAC on apoptosis-related factors in RAW264.7 cells during incubation with MA.
The MA group was treated with MA (50 μg/ml) for 24 h. MA + NAC group was pre-treated with NAC at a concentration of 600 mg/ml for 2 h before treatment with MA. The results are representative of three separate experiments. (A) Representative Western blot of BAX in RAW264.7 treated with MA or MA + NAC (n = 3 experiments, *p < 0.05, **p < 0.01 by image J). (B) Quantification of BAX levels, as represented in A it was quantified by densitometry and standardized to the β-actin level. (C, D) The levels of TNF-α and Casp9 mRNA was standardized by the double delta CT method. (Mean ± standard deviation, n = 3 experiments, *p < 0.05, **p < 0.01 by Student’s t-test).

Fig. 3. Effects of NAC on autophagy-related factors in RAW264.7 cells during incubation with MA.
The MA group was treated with MA (50 μg/ml) for 24 h. MA + NAC group was pre-treated with NAC at a concentration of 600 mg/ml for 2 h before treatment with MA. (A) Representative Western blot of beclin-1 and LC3 in RAW264.7 macrophages treated with MA or MA + NAC (n = 3 experiments). (B, C) Quantification of beclin-1(b) and LC3(c) levels, as represented in A. (D, E) The levels of mTOR and AMPK mRNA was quantified by densitometry, and standardized to the β-actin level. (Mean ± standard deviation, n = 3 experiments, *p < 0.05, **p < 0.01 by Student’s t-test).
Next we sought to examine AMPK and mTOR, important components in autophagy. The results indicated that NAC induced an increase in the level of mTOR mRNA when compared with MA only (Fig. 3D). As shown in Fig. 3E, NAC induced a decrease in the level of AMPK mRNA when compared to the MA group.

NAC reduces lung damage caused by MA. Finally, to confirm the immune suppression function of MA and NAC’s protection, we examined the histological changes in the lungs of mice after their treatment by the intranasal route with NAC and MA. Lung tissues of mice were analyzed by hematoxylin-eosin (HE) staining. Lung tissue sections from the control group and NAC group displayed normal structure and no pathological changes under the light microscope; no inflammatory cell infiltration was observed (Fig. 4A, B). In the MA group, the lung tissue of the mice was obviously damaged, the interstitial lung was congested, and apparent inflammatory cell infiltration was observed (Fig. 4C). In the MA + NAC group, the degree of alveolar wall damage was reduced compared with the MA group, and the infiltrating inflammatory cells were also significantly reduced (Fig. 4D).

Discussion

Bovine MTB complex is the primary causative agent of bronchiectasis and chronic and recurrent lung infections in patients. MA is a key compound of MTB infection and a significant contributor to lung injury in chronic MTB infection (Liu and Nikaido 1999). Early studies have shown that MA damage is primarily mediated by the generation of ROS and the destruction of host antioxidant defense mechanisms (Li et al. 2015). Consistent with previously published studies, we show here that RAW264.7 cells in response to incubation with MA reduce the relative expression of protein engaged in apoptosis and autophagy.

In the current study, RAW264.7 cells were first treated with NAC for 2 hours and then treated with MA for 24 hours. Here, we firstly showed that pretreatment with NAC significantly attenuated the changes in the level of the cell apoptosis protein BAX that were induced by the MA treatment. Compared with the MA group, the expression of the BAX gene was obviously reduced in the NAC + MA group. In addition, the mRNA levels of TNF-α and caspase-9 were also decreased.
BAX protein is known to be pro-apoptotic by regulating the permeability of the mitochondrial outer membrane (Lin et al. 2019). Caspase-9 cleaves the inactive pro-forms of effector caspases in apoptosis (Liu et al. 2014). When the mitochondrial membrane permeability changes, it promotes caspase-9 activation to induce apoptosis through TNF-α. The data obtained in the present study showed that NAC resulted in the simultaneous downregulation of caspase-9 and TNF-α, and the subsequent translocation of BAX to mitochondria. These results supported the hypothesis that NAC reduced MA-induced cell apoptosis of RAW264.7 cells, and it was mediated by the intrinsic mitochondrial pathway.

Under certain stress conditions (such as oxidative damage), autophagy plays a vital role in cell survival by scavenging proteins and damaged organelles to maintain cell homeostasis and integrity (Gutierrez et al. 2004). We examined the gene and protein expression of autophagy through quantitative real-time PCR and Western blot analysis. Besides, IL-6 concentration was evaluated with ELISA. From a mechanistic standpoint, LC3 can specifically accumulate in neonatal autophagosomes, so it is the most extensive and useful specific marker of autophagy. In contrast to the marker LC3, which forms the final autophagosome, beclin-1 is involved in the early stages of autophagy, releasing phosphorylated beclin-1, synthesizing autophagic vesicles, and recruiting proteins (Menon and Dhamija 2018). They are widely monitored as autophagy-related proteins. Our results show that incubation with MA increased the expression of autophagy-related protein. Remarkably, NAC inhibited the expression of the LC3 and beclin-1-encoding genes.

Furthermore, there are many signaling cascades involved in autophagy regulation in response to different stimuli. AMPK is the primary sensor of energy stress and is normally activated in response to various intracellular and extracellular stresses (Hardie 2014). It can also be activated by intracellular oxidative stress. The AMPK/mTOR signaling pathway is a classical upstream pathway regulating autophagy. Indeed, the reduction in ROS inhibits AMPK, thereby activating mTOR, the negative regulator of autophagy, and subsequently inhibiting autophagy (Cerni et al. 2019). Our results demonstrate that NAC might inhibit the expression of the autophagy-related LC3 and beclin-1-encoding genes via the reduction of intracellular ROS production.

In conclusion, our research showed that NAC attenuated the expression of the genes encoding for proteins of apoptosis and autophagy in RAW264.7 cells in response to incubation with MA. Mechanistically, an infection of MTB induced intracellular ROS production and subsequently promoted cell apoptosis. NAC attenuated MA-induced suppression of the activation of BAX and the production of IL-6. At the genetic level, NAC inhibits the expression of the TNF-α and caspase-9 genes and reduces the translation of apoptotic proteins. On the other hand, to investigate its possible autophagy mechanism, some autophagy-related proteins were measured. Our current study demonstrated that MA-induced the reduction of the cell autophagy-relative protein LC3, beclin-1, and the cell apoptosis-relative protein BAX. However, NAC could efficiently inhibit this reduction.

Orcid
Di Xue https://orcid.org/0000-0003-4376-5014

Acknowledgments
This study was funded by the National Natural Science Foundation of China (No. 31772710), Key Project of Research and Development of Ningxia Hui Autonomous Region of China (No. 2017BN04, No. 2020BEG03019, No. 2019BBF02005), Institution of Higher Education Projects of Building First-class Discipline Construction in Ningxia Region (Biology, NXYLXK2017B05), CAS “Light of West China” Program (XAB2017AW08).

Conflict of interest
The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

Extensively Drug-resistant *Acinetobacter baumannii* Belonging to International Clone II from A Pet Cat with Urinary Tract Infection; The First Report from Pakistan

ZEESHAN TAJ\(^1,2\), MUHAMMAD HIDAYAT RASOOL\(^1\), AHMAD ALMATROUDI\(^3\), MUHAMMAD SAQALEIN\(^1,2\) and MOHSIN KHURSHID\(^1*\)

\(^1\)Department of Microbiology, Government College University Faisalabad, Pakistan
\(^2\)Pet Care Clinic, Faisalabad, Pakistan
\(^3\)Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia

Submitted 30 December 2019, revised 26 March 2020, accepted 29 March 2020

Abstract

The carbapenem-resistant *Acinetobacter baumannii* (CRAB) has got global attention as a notorious nosocomial pathogen. This study describes a case of urinary tract infection in a 2-years old pet female cat infected with *A. baumannii*. The susceptibility profiling, screening for the resistance determinants, and the multilocus sequence typing was performed. The *A. baumannii* isolate was found to harbor the *bla*OXA23-like gene and corresponded to International clone II that has been widely reported to be involved in human infections. The study proposes that the pets may contribute towards the spread of clinically relevant antimicrobial-resistant pathogens.

Key words: MLST, sequence types, carbapenemases, *Acinetobacter baumannii*, companion animals

Acinetobacter baumannii is the most prevalent species of genus Acinetobacter that caused various nosocomial infections in clinical settings. *A. baumannii* is quite ubiquitous and has been found in water, air, and soil. Although the studies related to the animal infections caused by *A. baumannii* are limited, the reports have highlighted the involvement of *Acinetobacter* species in respiratory, urinary, bloodstream, and wound infections with an attributable mortality of 47% in pets (Pomba et al. 2017). The therapeutic management of carbapenem-resistant *A. baumannii* (CRAB) is challenging in clinical medicine (Sohail et al. 2016; Khurshid et al. 2017). The emergence of multidrug-resistant CRAB isolates has been increasingly reported and is mainly associated with the acquisition of the *bla*NDM gene and overexpression of the *bla*OXA-23 gene in bovines and equines (Poirel et al. 2012; Smet et al. 2012; Zhang et al. 2013). However, the majority of carbapenem-resistant phenotypes in *A. baumannii* isolates from the pets are mainly linked with the increased expression of the intrinsic genes (Ewers et al. 2017).

The data regarding the mechanisms underlying the antimicrobial resistance and molecular epidemiology of *Acinetobacter* species from the veterinary origin are limited compared to the *A. baumannii* strains from humans. However, the studies have revealed that the *A. baumannii* isolates from veterinary sources may harbor identical antimicrobial resistant determinants as well as share the identical clonal lineages as human strains suggesting a common source of infection (Zordan et al. 2011; Puntener-Simmen et al. 2019). Here, we have described a CRAB isolate harboring the *bla*OXA-23 gene from a pet cat suffering from urinary tract infection.

A two-years-old pet cat was brought to our pet clinic with dysuria and hematuria. The urine sample was aseptically collected, which showed significant bacteriuria, and *A. baumannii* was solely obtained. The cat was having a history of persistent fever, pyuria, anorexia, weight loss, postural changes, and mood disorders from the last three months, which were previously attempted to treat with multiple courses of antimicrobial agents empirically. Initially, the oral amoxicillin-clavulanate...
suspension was administered at a dose rate of 62.5 mg/cat PO twice daily for 14 days, followed by ciprofloxacin at a dose rate of 6 mg/kg PO q12h for 10 days.

The *A. baumannii* isolate was identified by amplification of the *recA* gene and ITS region in a multiplex PCR as described previously, as well as the amplification of the *bla*OXA-51 gene (Khurshid et al. 2017; Khurshid et al. 2020). The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) according to the CLSI guidelines (CLSI 2015). The genes encoding the carbapenem resistance and the presence of insertion element i.e., *ISAba1*, were detected using PCR as described previously using specific primers (Khurshid et al. 2017). The PCR was performed to detect the presence of 16S rRNA methyltransferase genes (*armA*, *rmtA*, *rmtB*, *rmtC*, *rmtD*, and *rmtE*) and aminoglycoside modifying enzymes (AMEs) i.e., *aphA1*, *aphA6*, *aadB*, *aadA1*, and *aacC1* and tetracycline and sulfonamide resistant genes including *tetA*, *tetB*, *sul1*, *sul2*, and *sul3* genes (Khurshid et al. 2019). The isolates were also screened for plasmid-mediated quinolone resistance genes (*qnrA*, *qnrB*, and *qnrS*) as well as mutations in the quinolone resistance-determining region by sequencing *gyrA* and *parC* gene (Gu et al. 2015). The multi-locus sequence typing (MLST) was performed using primers recommended by the MLST database for *A. baumannii* following the Pasteur scheme.

The strain was susceptible only to colistin (MIC 0.5 µg/ml), and tigecycline (MIC 1 µg/ml). The higher MICs of imipenem (MIC 16 µg/ml), meropenem (MIC 32 µg/ml), ceftazidime, cefotaxime, ceftriaxone (MIC 64 µg/ml), cefepime (MIC 32 µg/ml), pipercillin-tazobactam (MIC 128/4 µg/ml), and ampicillin-sulbactam (MIC 64/32 µg/ml) were linked with the production of *bla*OXA-23 (Opazo et al. 2012; Khurshid et al. 2017). The resistance to aminoglycoside i.e., MICs of amikacin (MIC 1024 µg/ml), gentamicin, and tobramycin (MIC 512 µg/ml) was attributed to the presence of 16S rRNA methyltransferase genes i.e., the *armA* gene as well as AMEs i.e., *aphA6*, *aadB*, and *aacC1*. Moreover, the MIC of trimethoprim-sulfamethoxazole was 16/304 µg/ml attributed to the presence of the *sul2* gene. The *A. baumannii* isolates showed resistance to tetracycline/doxycycline with a doxycycline MIC equal to 128 µg/ml, and it was related to the presence of the *tetB* gene. The strain was found resistant to ciprofloxacin (MIC 16 µg/ml), which was attributed to the mutation (Ser83Leu) in the *gyrA* gene. The genes conferring resistance to different antimicrobial agents that were found in the *A. baumannii* strain are summarized in Table I. The *ISAba1* was found upstream of the *bla*OXA-51 and *bla*OXA-23 genes.

The concerns related to the possible threats of the *bla*OXA-23 harboring CRAB among the pets and other farm animals have been increasing (Ewers et al. 2017). The information on *A. baumannii* in veterinary settings is, however, limited, and data related to the comparison of strains isolated from the humans and veterinary sources are quite inadequate (van der Kolk et al. 2019). From Pakistan, this is the very first report of extensively drug-resistant (XDR) CRAB isolates harboring the acquired the *bla*-OXA-23 and *armA* genes from an infected pet cat, which drives the attention towards the possible transmission of these XDR pathogens from the companion animals to humans.

The *bla*OXA-23 gene is a major cause of carbapenem resistance throughout the world; therefore, it can be considered a virulence marker and is located on the chromosome as well as on the plasmids. Moreover, the studies have found a strong correlation between the occurrence of the *bla*OXA-23 gene and multidrug-resistant phenotypes (Pomba et al. 2014; Zowawi et al. 2015; Khurshid et al. 2017).

The MLST has shown that the *A. baumannii* strain belonged to the sequence type 2 (ST2), and the eBURST analysis has revealed that it corresponded to the inter-

Table I Resistance genes detected in the *A. baumannii* strain isolated in a urine sample from the urinary tract infection suffering cat.

<table>
<thead>
<tr>
<th>Antibiotic category</th>
<th>Mechanism</th>
<th>Resistance associated gene</th>
<th>Resistance phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td>16S rRNA methyltransferase genes</td>
<td>armA</td>
<td>Amikacin(^a), Gentamicin(^a), Tobramycin(^a)</td>
</tr>
<tr>
<td></td>
<td>Aminoglycoside modifying enzymes</td>
<td>aphA6, aadB, and aacC1</td>
<td></td>
</tr>
<tr>
<td>Carbapenems</td>
<td>Oxacillinas</td>
<td>blaOXA-23</td>
<td>Imipenem(^a), Meropenem(^a), Cefazidime(^a), Cefotaxime(^a), Ceftriaxone(^a), Cefepime(^a), Piperacillin-tazobactam(^a), Ampicillin-sulbactam(^a)</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Quinolones Resistance Determining Region (QRDR)</td>
<td>gyrA gene mutation (Ser83Leu)</td>
<td>Ciprofloxacin(^a)</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Dihydropteroate synthase</td>
<td>Sul2</td>
<td>Sulfamethoxazole-Trimethoprim(^a)</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline efflux MFS transporter</td>
<td>tetB</td>
<td>Doxycycline(^a)</td>
</tr>
</tbody>
</table>

\(^a\) MIC 1024 µg/ml, \(^b\) MIC 512 µg/ml, \(^c\) MIC 16 µg/ml, \(^d\) MIC 32 µg/ml, \(^e\) MIC 64 µg/ml, \(^f\) MIC 32 µg/ml, \(^g\) MIC 128/4 µg/ml, \(^h\) MIC 64/32 µg/ml, \(^i\) MIC 16 µg/ml, \(^j\) MIC 16/304 µg/ml, \(^k\) MIC 128 µg/ml
national clonal lineage 2. The study conducted by Tada and his colleagues concluded that there is worldwide dissemination of this clone also harboring the blaOXA-23 and armA genes but does not suggest the human-to-animal transmission (Tada et al. 2015). Notably, the A. baumannii ST2 has been extensively isolated from humans, while some of the recent reports have also indicated the presence of ST2 in pets (Puntener-Simmen et al. 2019). The carbapenem-resistant isolates in these studies were found to possess the intrinsic blaOXA-51 gene solely or accompanied by the acquired blaOXA-23-like genes. Interestingly, the A. baumannii isolates were reported among the pets living in the community (Lupo et al. 2017). Although the data is quite limited regarding the carriage of Acinetobacter species beyond the veterinary clinical settings, more than a few studies during the recent few years have detected the A. baumannii isolates in the community among domestic birds, dogs, livestock, and other large animals. These studies specify that the incidence of A. baumannii infections among animals is increasing and these animals may serve as a reservoir for A. baumannii, particularly carbapenem-resistant strains, due to their selective advantage compared to the susceptible strains (Pomba et al. 2014; van der Kolk et al. 2019).

This study has reported an extensively drug-resistant A. baumannii, harboring the blaOXA-23 gene and other resistant associated genes isolated from a companion animal previously treated with multiple empirical antimicrobial courses. The infected pets may contribute to the pool of multidrug-resistant clinically relevant bacteria and their interaction with the human may transmit these pathogens to humans. The extensive epidemiological studies are essential for a better understanding of the extent of distribution, risk factors, and the directions of transmission of these multidrug-resistant strains.

Tada T, Miyoshi-Akiyama T, Shimada K, Nga TTT, Thu LTA, Son NT, Ohmagari N, Kirikae T. Dissemination of clonal complex 2 Acinetobacter baumannii strains co-producing carbapenemases

Effect of *Chlorella vulgaris* on Growth and Photosynthetic Pigment Content in Swiss Chard (*Beta vulgaris L. subsp. cicla*)

TIMEA HAJNAL-JAFARI*, VLADIMIRA SEMAN, DRAGANA STAMENOV and SIMONIDA ĐURIĆ

Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia

Submitted 6 March 2020, revised 10 April 2020, accepted 19 April 2020

Abstract

Microalgae application in agriculture is an alternative measure that could be highly beneficial to plants. The application of microalgae *Chlorella vulgaris* S45 and its effect on plant growth and pigment content in Swiss chard were investigated. In the treatments, 5% and 10% algal suspensions were applied by spraying on plants and in soil, respectively. *C. vulgaris* S45 affected the initial growth of Swiss chard and the content of photosynthetic pigments positively. The correlation analysis proved the existence of statistically significant interdependency between chlorophyll a (Chl *a*) content and leaf number (*r* = 0.876 at *p* < 0.05), and chlorophyll b (Chl *b*) content and fresh leaf weight (*r* = 0.783 at *p* < 0.05).

Key words: Swiss chard, soil microalgae, foliar spraying, growth parameters, pigment content

One of the challenges of modern agriculture is to organize production sustainably, applying all the means that are available to farmers in order to minimize the negative influences of agrochemicals on plants and soil. Microbial formulations containing effective microorganisms (EM) with the biofertilizer or biostimulator properties could be an alternative to chemical substances used in agriculture. Many positive effects are attributed to EM. Stimulated plant growth (Ku et al. 2018), and improved plant quality (Khalid et al. 2017) have been reported. Microalgae and their positive effects on plants are getting more attention in recent years because of their multifunctionality. Green algae species (*Chlorella vulgaris*, *Chlorella sorokiniana*, and *Chlorella pyrensosa*) are rich sources of proteins, lipids, carbohydrates, pigments, and other metabolites with different antimicrobial, antioxidant, and antitumor properties (Panahi et al. 2019). Moreover, microalgae are used as animal feed and human food. The application of green algae in vegetable production is also well documented (Hajnal-Jafari et al. 2016; Kim et al. 2018). Live algal cells or cell extracts are applied mostly as a soil amendment but also through seed priming or by foliar spraying (Barone et al. 2018). When applied foliarly, a thin algal biofilm is formed on the plant surface, which enables faster nutrients uptake, reduces evapotranspiration, and provides additional protection against pathogenic microorganisms and parasites (Ortiz-Moreno et al. 2019). Swiss chard (*Beta vulgaris L. subsp. cicla*) is a leafy vegetable very rich in vitamins K, A, and C but also in fatty acids, phospholipids, glycolipids, polysaccharides, ascorbic acid, folic acid, pectins, saponins, flavonoids, phenolic acids, and betalains (Gao et al. 2009). Swiss chard leaves contain high amounts of photosynthetic pigments such as chlorophylls and carotenoids. Their content in the plant can be enhanced through varying agricultural management practices (Barickman and Kopsell 2016). Although few pieces of researches focused on the investigation of EM application in Swiss chard (Daiss et al. 2008; Mouhamad et al. 2017), there is no information about green microalgae utilization in Swiss chard production for yield enhancement and/or quality improvement. Therefore, the aim of this research was to investigate the application of microalgae *C. vulgaris* and its effect on initial plant growth and photosynthetic pigment content in Swiss chard leaves.

The microalga *C. vulgaris* S45 (Algae Collection, Faculty of Agriculture, University of Novi Sad, Serbia), isolated from soil (Vojvodina, Serbia), was used in the research. It was cultured in liquid BG11 medium...
(1.5 g NaNO₃, 0.04 g K₂HPO₄, 0.075 g MgSO₄·7H₂O, 0.036 g CaCl₂·2H₂O, 0.006 g Citric acid, 0.006 g Ferric ammonium citrate, 0.001 g EDTA, 0.02 g Na₂CO₃, and 1 ml Trace metal solution) at 24°C on an orbital shaker (90 rpm) under two cold white lamps (2 × 950 Lm) and a photoperiod of 12 h light/12 h dark for two weeks. An algal culture containing 14 × 10⁶ CFU/ml was used to prepare the treatments for the seed germination and plant fertilization experiments. The treatments were set as follows: 1) control (BG11 medium without algae – 10% (v/v) water solution); 2) 5% (v/v) algal suspension (applied by spraying on plants); 3) 10% (v/v) algal suspension (applied by spraying on plants); 4) 10% (v/v) algal suspension (applied in soil).

Swiss chard seedlings were grown on humus/sand (3:1) mixture under the controlled condition at room temperature (25 ± 2°C) and natural daylight photoperiod for two weeks. The seedlings were transplanted in pots (800 ml) with the same humus/sand (3:1) mixture. Each treatment contained four repetitions. The first application of microalgae was made one week after seedlings transplantation following the experiment scheme. The second application was performed 30 days later. Each time, 15 ml of algal inoculums were sprayed on plants or added to the soil. Seven days after the second application the plant material was collected for pigments quantification. Leaves number, leaf (stalk + leaf) length and weight, root length, and weight were counted and measured. Chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids contents in leaves were calculated according to von Wettstein (1957). Plant samples (0.2 g) were grounded with 25 ml of 80% acetone in combination with 0.1% CaCO₃ to prevent chlorophyllase activity. After grinding, the samples were filtered, and the final volume (25 ml) was transferred to graduate tubes. The absorbance was read at 662, 644, and 440 nm, respectively, according to von Wettstein (1957) and Holm (1954) (Unicam SP600 spectrophotometer Series 2, Cambridge England). The pigment concentrations were calculated using von Wettstein’s formula as following: Chl a = 9.784 × A662 – 0.99 × A644 Chl b = 21.426 × A644 – 4.65 × A662; Carotenoids = 4.695 × A440 – 0.268 × (Chl a + b). The concentration of pigments was expressed in mg/g of fresh weight of leaves according to the following formula: mg/g = (mg/l × dilution) / (sample weight × 1,000). All the assays were performed in triplicate. The software Statistica, version 13.3 (TIBCO Software Inc.) was used for statistical analysis. The least significant difference test (Fisher LSD) and the Spearman correlation analysis were performed to compare the results between treatments.

Foliar and soil application of *C. vulgaris* S45 influenced the initial growth parameters of Swiss chard (Table I). The number of leaves per plant increased in both foliar treatments and treatment with soil application in comparison to the control. The highest number of leaves was achieved after the treatment with a 10% suspension applied foliarly. Leaf length and weight also differed significantly in treatments where algae were applied. The highest leaf length was obtained when *C. vulgaris* S45 was applied in the soil. The inoculated plants had bigger roots with an increased weight. Root length was not affected significantly by treatments.

C. vulgaris S45 affected the initial growth of Swiss chard positively, which is in accordance with the results of Faheed and Fattah (2008), who studied the effect of green algae on lettuce (*Lactuca sativa*) growth parameters (fresh and dry weight and shoot and root length).

The best results were achieved in treatments where *C. vulgaris* S45 were applied foliarly, particularly after the use of the 10% algal suspension. Microalgae contain different nutrients; produce secondary metabolites like hormones, enzymes, vitamins and/or pigments that could lead to significant increases in crop growth parameters, yield quantity, and its quality. When applied via foliar spraying, plants usually respond more rapidly since foliar uptake and translocation of nutrients and solutes are faster. Our results correlate with the results of Dias et al. (2016), who found positive effects of microalgae products (*Spirulina platensis*) applied on leaves of eggplant. The tomato fertilization with *Nannochloris* sp. 424 leads to better plant development and growth (Oancea et al. 2013). The authors found an increase in the plant height by more than 10% when compared to the control, also better development of root length (108.08% control), leaf number (120.31% control), and leaf area (105.16% control). The weight of fresh lettuce increased by 56.34% after foliar treatment with *C. vulgaris* (Hajnal-Jafari et al. 2016).

The soil application of *C. vulgaris* S45 affected positively the leaf length (24.76 cm) and fresh leaf weight (11.33 g/plant) as well as root length (8.46 cm) and fresh root weight (0.33 g/plant), though the increase was not statistically significant. Microalgae as soil additives can promote plant nutrition, which in turn enhances all physiological reactions that lead to enhanced growth (Faheed and Fattah 2008). In transplanted vegetable crops such as Swiss chard, the application of microalgae

<table>
<thead>
<tr>
<th>Treatments Chlorophyll a</th>
<th>Chlorophyll b</th>
<th>Carotenoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.0012<sup>c</sup></td>
<td>0.3949<sup>c</sup></td>
</tr>
<tr>
<td>5% foliar</td>
<td>0.0149<sup>d</sup></td>
<td>0.3419<sup>b</sup></td>
</tr>
<tr>
<td>10% foliar</td>
<td>0.0326<sup>c</sup></td>
<td>0.5354<sup>a</sup></td>
</tr>
<tr>
<td>10% soil</td>
<td>0.0126<sup>c</sup></td>
<td>0.4000<sup>d</sup></td>
</tr>
</tbody>
</table>

* Different letters in subscripts indicate statistically significant difference according to the Fisher LSD test (p < 0.05).
has particular importance since plants go through a very stressful period. The root system, after transplantation, must be provided with a sufficient supply of nutrients in order to plant development proceeds normally. Barone et al. (2019) found that soil treatment with *Chlorella vulgaris* and their extract increased soil enzymatic activity as well as the growth of tomato plants in treated soil. The soil application of *Acutodesmus dimorphus* biomass (50 and 100 g of dry biomass per 28-cm pot) on tomato seedlings, three weeks before the seedling transplantation resulted in the increased plant growth (higher numbers of branches and flowers), compared to the non-treated control (Garcia-Gonzalez and Sommerfeld 2016).

According to the results (Table II), in Swiss chard leaves, Chl *a* content ranged from 0.0012 mg/g to 0.0326 mg/g. The highest concentration of *C. vulgaris* S45 as foliar treatment led to the highest content of Chl* a* and Chl *b* (0.0326 mg/g and 0.5354 mg/g, respectively). Our results showed higher content of Chl *b* after all treatments when compared to Chl *a* content. It could be because during the plant experiment, although conducted in controlled conditions with natural daylight photoperiod, plants were not exposed to direct sunlight. Goncalves et al. (2001) also found higher Chl *b* concentrations in tonka beans and mahogany grown in the shade. Foliar treatment with 10% algal suspension showed a significant increase in carotenoids content (0.1033 mg/g) compared to the control.

The correlation analysis proved the existence of statistically significant interdependency between Chl *a* content and leaf number (*r* = 0.876 at *p* < 0.05). High correlations were observed between Chl *b* content and leaf fresh weight leaf (*r* = 0.783 at *p* < 0.05). Carotenoids content and fresh leaf weight also correlated positively (*r* = 0.720 at *p* < 0.05)

Plant pigment content is an important quality indicator, which has a great impact on consumer selection. Chlorophylls and carotenoids accumulation is influenced not only by plant physiological, biochemical, and genetic attributes, but also by environmental factors, such as light, temperature, and fertilization (Barickman et al. 2016). Application of fresh microalgal cells increased the pigmentation (Chl *a*, Chl *b*, and carotenoids content) in Swiss chard. The results of this study comply with other studies related to biostimulants application and pigments accumulation in tomato and watermelon (Abdel-Mowgoud et al. 2010; Djuric et al. 2014). Coppens et al. (2016) recorded an increased carotenoid concentration in tomato fruits treated with dry biomass of *Nannochloropsis* spp., *Ulothrix* spp., and *Klebsormidium* spp. Seed soaking and plant treatment with different microbial consortia containing algae led to increased accumulation of chlorophylls and carotenoids in plants (Dineshkumar et al. 2018). The improved photosynthetic activity resulted in an improved yield quality. The stimulation of chlorophyll and carotenoid biosynthesis was associated with enhanced plant growth in the study with lettuce inoculated with *C. vulgaris* (Faheed and Fattah 2008). The correlation analysis showed that higher pigment content could positively influence plant growth and final yield development. The high interdependency between cotton chlorophyll content and yield parameters was also found in the research conducted by Boggs et al. (2003). Blackmer and Schepers (1995) also found a higher correlation between chlorophyll content and the maize grain yield in a later stage of development. On the other hand, Güler and Özkölt (2007) argued that lower leaf chlorophyll values in the early developmental stage of dry bean (38 days after emergence) did not mean that the final yield could be lower.

In conclusion, the results indicated that *C. vulgaris* S45 might be used as an alternative foliar fertilizer that could enhance and improve the growth of Swiss chard, especially after the use of the 10% algal suspension. The application of an appropriate microalgae formulation could be an important measure to achieve a more sustainable and eco-friendly food production.

Acknowledgments
This work was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (Project III 43002).

Conflict of interest
The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Leaf number</th>
<th>Leaf length cm</th>
<th>Root length cm</th>
<th>Fresh root weight g/plant</th>
<th>Fresh leaf weight g/plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5c</td>
<td>16.66b</td>
<td>6.75ab</td>
<td>8.46b</td>
<td>0.17b</td>
</tr>
<tr>
<td>5% foliar</td>
<td>7c</td>
<td>18.43ab</td>
<td>5.36b</td>
<td>6.87ab</td>
<td>0.14ab</td>
</tr>
<tr>
<td>10% foliar</td>
<td>9</td>
<td>21.96ab</td>
<td>7.60b</td>
<td>13.04b</td>
<td>0.37b</td>
</tr>
<tr>
<td>10% soil</td>
<td>7c</td>
<td>24.76c</td>
<td>8.46c</td>
<td>11.33c</td>
<td>0.33bc</td>
</tr>
</tbody>
</table>

* Different letters in subscripts indicate statistically significant difference according to the Fisher LSD test (*p* < 0.05)
Literature

INFORMACJE Z POLSKIEGO TOWARZYSTWA MIKROBIOLOGÓW

Od ostatniej informacji o działalności Zarządu Głównego Polskiego Towarzystwa Mikrobiologów, zamieszczonej w zeszytach nr 1 z 2020 r. kwartalników Advancements of Microbiology – Postępy Mikrobiologii i Polish Journal of Microbiology, ZG PTM zajmował się następującymi sprawami:

I. Zgodnie ze Statutem PTM raz w roku odbywa się zebranie członków ZG PTM, które było planowane na 30.03.2020 r. w Warszawie. Jednakże ze względu na panującą pandemię COVID-19 zdecydowano się na prze prowadzenie Zebrania ZG PTM w formie elektronicznej. Ankiety z pytaniem dotyczącym tej formy Zebrania dostarczono e-mailowo do członków ZG PTM. Wszyscy wyrazili zgodę na zaproponowaną formę zebrania. W Uchwale 8-2020 z dnia 13.03.2020 r. podjęto decyzję w tej sprawie. Odbyło się pierwsze w historii PTM zebranie internetowe Zarządu Głównego PTM. Przygotowane materiały w postaci plików zostały rozesłane w 19 e-mailach do wszystkich członków ZG PTM w piątek 27.03.2020. Przyjęcie Uchwała ustalono na dzień 30.03.2020 r. Podczas Zebrania ZG PTM w formie elektronicznej poruszano następujące zagadnienia:

1. Przedstawiono informację o działalności Prezydium PTM od 25.03.2019 r. do 27.03.2020 r. Podjęto Uchwałę 9-2020 w sprawie akceptacji działalności Prezydium ZG PTM za oceniany okres.

3. Podjęto Uchwałę 10-2020 w sprawie uporządkowania listy członków zwyczajnych PTM i usunięcia z niej osób nieopłacających składek członkowskich w statutowo przewidzianym terminie. W porównaniu z ubiegłym rokiem podobna jest liczba osób nieopłacających składki członkowskiej za rok 2019 r. (w 2018 r. z PTM usunięto 78 osób), pomimo przypominania o tym podstawowym obowiązku członka PTM przez OT PTM w styczniu 2020 r. i następnie dwukrotnie przez sekretariat ZG PTM w lutym i marcu b.r. Imienne listy osób usuwanych z poszczególnych Oddziałów zestawiono w załączniku do Uchwały 10-2020.

5. Spotykamy się z sytuacją, że osoby zaakceptowane Uchwałami PTM jako członkowie zwyczajni nie opłacają pierwszej składki członkowskiej, pomimo wyraźnej informacji, że trzeba spełnić oba warunki, aby być przyjętym do PTM. Przyjęto Uchwałę 12-2020, w której określono, że deklaracja członka zwyczajnego, zaakceptowana Uchwałą ZG PTM, której nie będzie towarzyszyć opłata składki członkowskiej wniesiona w ciągu 6 miesięcy od daty tej Uchwały, o której zawiadamiany jest kandydat na członka, zostanie usunięta z archiwum PTM, a decyzja ZG PTM o akceptacji przyjęcia członka do PTM anulowana. Osoba zostanie o tym fakcie poinformowana drogą elektroniczną. Wprowadzony zostanie odpowiedni zapis w formularzu.
6. Zgodnie z uchwalonym Regulaminem wydatkowania i rozliczania środków pieniężnych przez Oddziały Terenowe PTM, została przekazana informacja o udostępnianiu Oddziałom Terenowym PTM od stycznia 2019 r., na pokrycie kosztów prowadzenia działalności statutowej przez ten Oddział, 10% kwoty uzyskanej z tytułu składek członkowskich oraz 50% kwoty uzyskanej z tytułu pozyskania sponsora, Członka Wspierającego PTM, darowizny lub innej dodatkowej kwoty, na rzecz PTM, przez dany Oddział. Przedstawiono Tabelę dotyczącą liczby członków w Oddziałach oraz Tabelę przyznanych Oddziałom środków finansowych w 2020 r. oraz w roku poprzednim. Jednocześnie zauważamy pojawiający się problem kumulacji środków niewykorzystywanych przez Oddziały. Musimy tę sprawę uregulować, ponieważ za kilka lat może pojawić się problem, że w jednym roku kilka Oddziałów będzie chciało wykorzystać swoje nagromadzone fundusze, a wtedy budżet PTM tego może nie udzielić. Poprosiliśmy wszystkich członków ZG PTM o zastanowienie nad rozwiązaniem tego problemu, przekazaniem swoich uwag i ewentualne propozycje aneksu do Regulaminu. Sprawa ta powinna zostać uregulowana w najbliższym czasie.

11. Przedstawiono sprawozdania Zarządów Oddziałów Terenowych za okres od 25.03.2019 r. do 27.03.2020 r. oraz informacje o czynionych staraniach w celu pozyskania środków finansowych na XXIX Zjazd PTM, a także o planach Oddziałów w Rzeszowie.

Informacje z polskiego Towarzystwa Mikrobiologów

241

Będziemy Państwa informować o ewentualnej decyzji o przesunięciu daty organizacji Ogólnopolskiego XXIX Zjazdu PTM.

13. Przekazano informacje z FEMS i IUMS. Federacja FEMS przyznała dofinansowanie do: XXIX Zjazdu PTM 2020 w wysokości 3 000 Euro oraz do I Polish Yeast Conference w wysokości 2 000 Euro. Ponadto FEMS przyznała granty na realizację projektów * „Siderophores and biosurfactants produced by Antarctic psychrotolerant bacteria as new bioproducts for cold-active biotechnologies – identification and characterisation of novel secondary metabolites” złożonego przez Pana Michała Styczyńskiego z Wydziału Biologii UW; * „Susceptibility profiling of Mycobacterium tuberculosis isolates from Poland and Lithuania”, złożonego przez Panią Zofię Bakułę z Wydziału Biologii UW.

* Federacja IUMS organizuje kongres IUMS w dniach 12–16 października 2020 r. w Daejon w Korei Południowej (https://www.iums2020.org/).

17. Przedstawiono pomysł Przewodniczącego Zarządu Oddziału PTM w Warszawie dotyczący tworzenia logotypów i osobnych stron internetowych Oddziałów Terenowych PTM. Zbieramy opinie w tej sprawie.

Naświetlenie sytuacji

Jak informowano na zebraniach ZG PTM w 2017 i 2018 r., a także w 2019 r., wydawanie czasopism PM i PJM przynosi Towarzystwu istotne straty finansowe. Aby temu zaradzić w pierwszym etapie zdecydowano znacznie ograniczyć wydawanie papierowej edycji zeszytów czasopism oraz ich wysyłkę do członków PTM. W drugim etapie rozważano możliwości upublicznienia i umiędzynarodowienia obu czasopism, co miało zaowocować zwiększeniem cytowalności (przez autorów zagranicznych), tym samym zwiększeniem wartości współczynników IF i MNiSW (opartych na cytowalności), a w końcowym efekcie możliwości podniesienia opłat za publikacje artykułów w czasopismach, tak aby osiągnąć samofinansowanie się czasopism. Ta polityka wydaje się sprawdzać w przypadku czasopisma PJM. Poczynając od 2017 r. gdy wygaśła umowa z firmą wydawniczą Index Copernicus, członkowie Prezydium ZG PTM z Warszawy wraz z członkami redakcji PM i PJM starali się wypracować optymalne rozwiązanie dla poprawienia sytuacji finansowej czasopism. W ciągu dwóch lat nastąpiły zmiany członków redakcji PJM. Obecnie w celu ograniczenia kosztów redakcji PJM pracuje w dwu osobowym składzie. Nawiązano kontakt z firmą Exeley z Nowego Jorku, która obiecywała duże wsparcie w wydawaniu i upublicznianiu czasopism, co miało podnieść ich pozycje w rankingach. Podpisano umowy trzyletnie dotyczące wydawania PJM od 2018 r. oraz wydawania PM od 2019 r. na platformie Exeley. Wdrożenie nowej formy wydawniczej wiązało się z bardzo dużą pracą zespołów redakcyjnych. Związana opanowanie systemu wydawniczego Editorial Manager i przygotowanie go do obecnej funkcjonalności przez dwu osobowy zespół PJM, wymagało dużego zaangażowania i czasu. Również współpraca z firmą Exeley nie jest idealna i nie spełniła wszystkich naszych oczekiwań.

Towarzystwo realizując zamiar podniesienia rangi czasopism wydawanych przez PTM wystąpiło z wnioskiem do MNiSW w 2017 r. do zmiany nazwy czasopisma – PM na Advancements of Microbiology – Postępy Mikrobiologii, co miało podnieść ich pozycje w rankingach. Skorzystano z możliwości publikowania artykułów przez autorów zagranicznych w PM, co miało podnieść ich pozycje w rankingach. W ubiegłym roku zakończyło się w ubiegłym roku, ale zaplanowano wydanie kilku zeszytów PM w dwóch wersjach językowych – polskiej i angielskiej. Ze względu na wydawanie artykułów w języku polskim i niską cytowalność PM w ubiegłym roku został wykluczony z bazy Scopus. Zmniejszenie liczby artykułów w języku angielskim może w końcowym efekcie spowodować obniżenie oceny PM i utratę współczynnika IF, co skończy się fatalnie, bo niewiele osób będzie wtedy chciało publikować w PM. W tej sytuacji obecnie boryka się kwartalnik *Medycyna Doświadczalna i Mikrobiologia*, który choć przyjmuje artykuły eksperymentalne i przeglądowe w języku angielskim, to niewiele osób chce w nim publikować ze względu na brak współczynnika IF, chociaż czasopismo ma 20 punktów MNiSW. W ubiegłym roku ukazały się tylko 2 zeszyty MDiM.
Nieźle sobie chyba radzi kwartalnik Postępy Higieny i Medycyny Doświadczalnej, publikujący w podobny sposób jak MDiM, ale będąc wyżej notowanym w rankingach i posiadając współczynnik IF, może pozwolić sobie na pobieranie opłaty 1100 zł + VAT. Podobna opłata dla członków PTM (350 USD + VAT) dotyczy artykułów zamieszczanych w PJM. Ale dla autorów nie należących do PTM, publikujących w PJM to już 700 USD + VAT, co pozwala na znaczne obniżenie kosztów wydawania czasopisma. Na brak manuskryptów redakcja PJM nie narzeka. Mamy nadzieję, że w przyszłym roku PJM będzie już czasopismem samo-finansującym się.

Redakcja PM oraz Zarząd Oddziału Warszawskiego PTM skierowały pisma do ZG PTM w trosce o przyszłość PM i rozważenia „wiodącej, jeśli nie wyłącznej roli języka polskiego w publikacjach czasopisma Postępy Mikrobiologii”. Członkowie PTM muszą się nad tą sprawą zastanowić. Będziemy zbierać opinie na ten temat, ale wydaje się jednak, że konieczne jest czynienie dużych wysiłków w celu upublicznienia i umiędzynarodowienia czasopisma, co mogłoby w pewnej perspektywie przynieść korzyści w postaci podniesienia pozycji PM w rankingach i zmniejszenia strat ponoszonych przez PTM.

W dniu 20.04.2020 r w drodze elektronicznej Zarząd Główny PTM podjął Uchwałę 18-2020 w sprawie przesunięcia terminu Ogólnopolskiego XXIX Zjazdu PTM na wrzesień 2021 r. oraz przedłużenia o rok kadencji Delegatów PTM na Walne Zgromadzenie Delegatów PTM.

IV. Prezydium ZG PTM w dniu 08.05.2020 r. podjęło Uchwałę 20-2020 o organizacji Ogólnopolskiego XXIX Zjazdu PTM w terminie 14–17 września 2021 r. w Sangate Airport Hotel w Warszawie. Mamy nadzieję, że do tak odległego terminu, pandemia COVID-19 zostanie opanowana i będzie wystarczająco czasu aby przygotować prezentacje na Zjazd oraz pozyskać środki finansowe na jego organizację.
V. PTM podpisało umowę „Agreement for Full Participation of Polish Journal of Microbiology in NIH PubMed Central Archive” dotyczącą indeksowania PJM w bazie PubMed, co jest bardzo ważne dla wizualizacji i indeksacji naszego kwartalnika.
Dnia 05.06.2020 r. otrzymaliśmy wiadomość, że Polish Journal of Microbiology znalazł się w bazie PubMed Central po adresem: https://www.ncbi.nlm.nih.gov/pmc/journals/3847/

VI. Członkowie ZG PTM w stanowisku z dnia 22.04.2020 r. nie zaakceptowali pomysłu Przewodniczącego Oddziału Terenowego PTM w Warszawie, aby Oddziały utworzyły swoje osobne strony internetowe i opracowały swoje logotypy, wychodząc z założenia, że PTM jest jednolitym stowarzyszeniem posiadającym swoją stronę internetową i podstrony dla wszystkich Oddziałów oraz logotyp PTM wyłoniony w konkursie zorganizowanym kilka lat temu.

VII. Polskie Towarzystwo Mikrobiologów wyrażało swoje opinie dla Krajowej Rady Diagnostów Laboratoryjnych w sprawie testów genetycznych służących do wykrywania wirusa SARS CoV-2 i testów serologicznych do wykrywania przeciwciał dla tego wirusa.

VIII. Organizatorzy kongresu IUMS, 12–16 października 2020 r. w Daejon w Korei Południowej przesunęli terminy: przesłania abstraktów – do 30.06.2020 r. oraz wczesnej rejestracji – do 31.07.2020 r.

IX. Zmieniono formę dorocznego spotkania przedstawicieli europejskich towarzystw mikrobiologicznych FEMS Council 2020. Odbędzie się ono 04.09.2020 r. (13:00-15:00) on-line.

X. W dniu 08.06.2020 r. odbyło się wirtualne spotkanie członków Komitetu Organizacyjnego XXIX Zjazdu PTM. Omawiano sprawy:
1) pozyskiwania środków finansowych (zdecydowano podpisać umowę z MNiSW dotyczącą dofinansowania organizacji Zjazdu na kwotę 70 000 zł – występowaliśmy o 300 000 zł),
2) zaangażowania firm mogących wspierać logistycznie organizację Zjazdu,
3) zdecydowano popierać i udzielać patronatu konferencjom mikrobiologicznym organizowanym w 2021 r. w innym terminie niż XXIX Zjazd PTM. Jednocześnie prosimy wszystkie Zarządy OT PTM oraz wszystkich członków PTM o nieorganizowanie konferencji mikrobiologicznych w planowany terminie naszego Zjazdu PTM, to jest 14–17.09.2021.

XI. Zwróćliśmy się do kancelarii prawnej w sprawie opinii na temat poprawności Uchwały ZG PTM nr 18-2020 dotyczącej przesunięcia terminu Ogólnopolskiego XXIX Zjazdu PTM na wrzesień 2021 r. oraz przedłużenia o rok kadencji Władz PTM na wszystkich szczeblach, a także kadencji Delegatów PTM na Walne Zgromadzenie Delegatów PTM. O ile sprawa przesunięcia terminu Zjazdu jest poprawna pod względem prawnym, to „przedłużenie o rok kadencji Władz PTM na wszystkich szczeblach, a także kadencji Delegatów PTM na Walne Zgromadzenie Delegatów PTM” wymaga innego niż Uchwała ZG PTM trybu postępowania. Zgodnie z opinią prawną, kadencja władz wszystkich stowarzyszeń w Polsce, w tym PTM, zostaje wydłużona w drodze Ustawy z dnia 04.06.2020 r. (Czwarta Tarcza), a nie decyzją ZG PTM. Według tej Ustawy wybór władz stowarzyszenia na nową kadencję musi być dokonany w terminie do 60 dni od dnia odwołania stanu zagrożenia epidemickiego lub stanu epidemii.

XII. Na dzień 1 maja 2020 r. nasze Towarzystwo liczy 924 członków. Najliczniejsze oddziały terenowe, grupujące ponad 100 członków, to OT Warszawa i OT Kraków.

Warszawa, 10.06.2020 r.
CZŁONKOWIE WSPIERAJĄCY PTM

Członek Wspierający PTM – Złoty
od 27.03.2017 r.

HCS Europe – Hygiene & Cleaning Solutions
ul. Warszawska 9a, 32-086 Węgrzce k. Krakowa
tel. (12) 414 00 60, 506 184 673, fax (12) 414 00 66
www.hcseurope.pl

Firma projektuje profesjonalne systemy utrzymania czystości i higieny dla klientów o szczególnych wymaganiach higienicznych, m.in. kompleksowe systemy mycia, dezynfekcji, osuszania rąk dla pracowników służby zdrowia, preparaty do dezynfekcji powierzchni dla służby zdrowia, systemy sterylizacji narzędzi.

Członek Wspierający PTM – Srebrny
od 12.09.2017 r.

Firma Ecolab Sp. z o.o. zapewnia: najlepszą ochronę środowiska pracy przed patogenami powodującymi zakażenia podczas leczenia pacjentów, bezpieczeństwo i wygodę personelu, funkcjonalność posiadanego sprzętu i urządzeń.
Firma jest partnerem dla przemysłów farmaceutycznego, biotechnologicznego i kosmetycznego.

Członek Wspierający PTM – Zwyczajny
od 12.09.2017 r.

Firma Merck Sp. z o.o. jest częścią międzynarodowej grupy Merck KGaA z siedzibą w Darmstadt, Niemcy i dostarcza na rynek polski od roku 1992 wysokiej jakości produkty farmaceutyczne i chemiczne, w tym podłoża mikrobiologiczne.

Członek Wspierający PTM – Zwyczajny
od 06.06.2019 r.

Firma BART jest producentem i dystrybutorem surowców oraz dodatków dla przemysłu spożywczego i farmaceutycznego.
Specjalizujemy się w probiotykach oraz surowcach uzyskiwanych metodami biotechnologicznymi.
Współpracujemy z renomowanymi producentami: Probiotical, Gnosis, Lesaffre.